
Preface 1

Ali AZARY

2

Table of Contents
Preface .. 4

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 5

1. Introduction: Classification for Trading Signals ... 5

2. Problem Definition: Predicting Buy/Sell Signals .. 5

3. Getting Started: Setting Up the Environment ... 6

4. Exploratory Data Analysis (EDA) ... 7

5. Data Preparation .. 8

6. Evaluate Algorithms and Models .. 11

7. Model Tuning and Grid Search (Random Forest) ... 13

8. Finalize the Model and Evaluate... 14

9. Backtesting the Trading Strategy (Simplified) .. 16

10. Conclusion and Next Steps ... 17

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 18

Can Kalman Filters Improve Your Trading Signals .. 31

Decision Tree Learning .. 36

Decision Trees and EMA Crossover 50% Average Annual Returns 43

1. Theoretical Foundations ... 44

1.1 Exponential Moving Average (EMA) ... 44

1.2 Relative Strength Index (RSI) .. 45

1.3 Moving Average Convergence Divergence (MACD) .. 45

2. Decision Trees: Theory and Equations ... 45

2.1 Introduction to Decision Trees ... 45

2.2 Structure of a Decision Tree .. 45

2.3 Splitting Criteria.. 46

2.4 Decision Trees in the Trading Strategy .. 46

3

3. Strategy Implementation .. 47

3.1 Feature Engineering .. 47

3.2 Training and Prediction Process ... 47

3.3 Trade Execution Logic ... 48

3.4 Code Walkthrough .. 48

5. Backtests .. 50

5. Conclusion .. 55

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 56

Market Regime Detection using Hidden Markov Models ... 63

Code Breakdown ... 64

Neural Networks with Kalman Filter for Trading ... 73

1. Theoretical Background .. 73

1.1 Neural Networks ... 73

1.2 Kalman Filter .. 74

2. The Trading Strategy ... 75

Trading Signal Generation ... 75

Backtesting the Strategy ... 75

3. Code Walkthrough ... 75

3.1 Data Acquisition and Preprocessing ... 75

3.2 Smoothing with the Kalman Filter... 76

3.3 Rolling Neural Network Training and Prediction ... 76

3.4 Performance Evaluation and 7-Day Return Calculation 78

3.5 Constructing and Plotting the Equity Curves ... 78

4. Conclusion .. 80

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in Python .. 81

Trading Using Neural Networks .. 88

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 93

Preface 4

Preface
Welcome to "Machine Learning & AI: A Collection of Articles on AI and Trading"—your
gateway to understanding how artificial intelligence and modern machine learning
techniques are revolutionizing trading, investing, and financial analysis.

This curated collection brings together my most popular and insightful articles, each
exploring a unique facet of AI and quantitative trading, from practical Python
implementations to advanced strategies like neural networks, regime detection, and
algorithmic Bitcoin trading. Whether you’re a quant enthusiast, a professional trader, or
simply curious about the intersection of technology and finance, you’ll find actionable
ideas and real-world code you can use today.

But why stop here? If you enjoy this collection, you’ll find even more depth, structure, and
ready-to-use strategies in my other books and guides, available now on our website:

https://www.pyquantlab.com/#books

• Advanced Quantitative Trading: Master powerful Python-based strategies and
backtesting techniques for real-world edge.

• Backtrader Essentials: Your fast track to building, testing, and optimizing
strategies with the Backtrader library.

• Practical Financial Machine Learning: A step-by-step guide for applying cutting-
edge ML to finance and trading.

• The Complete Technical Analysis Guide: Proven, ready-to-use technical trading
systems you can start using right away.

• Desktop App Development with PyQt5: Build professional financial and trading
apps in Python.

• Moving Average Convergence: Discover ten crossover and ribbon strategies for
consistent results.

All these resources are designed to help you take your trading and programming to the next
level—whether you want to automate your trading, analyze data like a pro, or just get
started with Python in finance.

Thank you for reading, and I hope this collection sparks new ideas for your journey into AI-
powered trading!

Ali Azary

https://www.pyquantlab.com/#books

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 5

Algorithmic Bitcoin Trading Strategy using Machine
Learning Classification
This tutorial provides a comprehensive guide to developing an algorithmic trading strategy
for Bitcoin using machine learning classification techniques. We’ll cover everything from
fetching real-time Bitcoin data and engineering predictive features to building and
evaluating classification models, and finally, backtesting the strategy. This guide is
designed to be self-contained, with all necessary Python code and explanations.

1. Introduction: Classification for Trading Signals

Cryptocurrency markets, known for their volatility and 24/7 trading, present unique
challenges and opportunities for algorithmic trading. Machine learning, particularly
classification, can be employed to predict market movements and generate trading signals
(e.g., buy, sell, or hold).

The core idea is to transform the problem of predicting price movements into a
classification task. For instance, we can classify the next period’s expected price
movement into categories like “price will rise” (buy signal) or “price will fall” (sell signal).
One powerful aspect of machine learning is feature engineering, where we create new,
informative features from raw data (like price and volume) to improve model performance.
Technical indicators are a common source for such features.

This tutorial will focus on:

• Building a trading strategy based on classifying buy/sell signals.
• Engineering features using common technical indicators.
• Developing a framework to backtest the trading strategy’s performance.
• Choosing appropriate evaluation metrics for a trading strategy.

2. Problem Definition: Predicting Buy/Sell Signals

We aim to predict whether the current trading signal for Bitcoin is to buy (1) or sell (0). This
signal will be determined by comparing short-term and long-term price trends. For
example, if a short-term moving average of the price is above a long-term moving average,
it might indicate an uptrend (buy signal), and vice-versa.

• Data: We’ll use historical Bitcoin price data. We will fetch up-to-date data
using yfinance.

• Features: We will create various trend and momentum technical indicators from
the price data to serve as input features for our classification model.

• Target Variable: A binary signal (1 for buy, 0 for sell) derived from the relationship
between short-term and long-term moving averages.

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 6

3. Getting Started: Setting Up the Environment
3.1. Python Packages

We’ll need several Python libraries:

• yfinance: For fetching financial data (Bitcoin prices).
• pandas: For data manipulation and analysis.
• numpy: For numerical operations.
• matplotlib.pyplot and seaborn: For data visualization.
• scikit-learn: For machine learning tasks, including:

o model_selection (for train_test_split, KFold, cross_val_score, GridSea
rchCV)

o Various classifiers
(e.g., LogisticRegression, DecisionTreeClassifier, RandomForestClassi
fier)

o metrics (for accuracy_score, confusion_matrix, classification_report)
import yfinance as yf
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, KFold, cross_val_score,
GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier,
GradientBoostingClassifier, AdaBoostClassifier, ExtraTreesClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
import warnings
warnings.filterwarnings(action='ignore')

Set a consistent style for plots
plt.style.use('seaborn-v0_8-whitegrid')
pd.set_option('display.width', 100)

3.2. Loading the Data

We will fetch Bitcoin (BTC-USD) data using yfinance. The original context uses minute-by-
minute data; for simplicity and common practice with yfinance for daily strategies, we’ll
fetch daily data. The principles remain the same.

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 7

ticker = 'BTC-USD'
start_date = '2018-01-01'
end_date = pd.to_datetime('today').strftime('%Y-%m-%d')

try:
 raw_data = yf.download(ticker, start=start_date, end=end_date,
auto_adjust=False, progress=False)
 if raw_data.empty:
 raise ValueError("No data downloaded. Check ticker or date range.")

 dataset = raw_data[['Open', 'High', 'Low', 'Close', 'Volume']].copy()
 dataset.rename(columns={'Volume': 'Volume_(BTC)'}, inplace=True)
 print("Successfully downloaded Bitcoin data.")
except Exception as e:
 print(f"Error downloading data: {e}")
 print("Using a dummy dataset for demonstration purposes.")
 dates = pd.date_range(start='2020-01-01', periods=1000, freq='D')
 data_dummy = {
 'Open': np.random.rand(1000) * 10000 + 30000,
 'High': np.random.rand(1000) * 10000 + 35000,
 'Low': np.random.rand(1000) * 10000 + 25000,
 'Close': np.random.rand(1000) * 10000 + 30000,
 'Volume_(BTC)': np.random.rand(1000) * 100 + 10
 }
 dataset = pd.DataFrame(data_dummy, index=dates)

print("\nDataset shape:", dataset.shape)
dataset.dropna(axis=0, how='all', inplace=True) # Drop rows if all values are
NaN (can happen with yfinance for some dates)
print("Dataset shape after dropping all-NaN rows:", dataset.shape)

4. Exploratory Data Analysis (EDA)
print("\nDataset Info:")
dataset.info()

4. Exploratory Data Analysis (EDA)

A quick look at the data structure.

print("\nDataset Info:")
dataset.info()

print("\nSummary Statistics:")
print(dataset.describe())

Visualizing the closing price helps understand its trend and volatility.

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 8

plt.figure(figsize=(14, 7))
dataset['Close'].plot(grid=True)
plt.title(f'{ticker} Closing Price ({start_date} to {end_date})')
plt.ylabel('Price (USD)')
plt.savefig('bitcoin_closing_price.png')
print("\nSaved Bitcoin closing price plot to bitcoin_closing_price.png")
plt.show()
plt.close()

Bitcoin’s price chart typically shows significant volatility and distinct trend periods.

5. Data Preparation
5.1. Data Cleaning

Financial data can have missing values, especially for less liquid assets or specific
exchanges. For daily yfinance data, NaNs are less common for major assets like BTC-USD
but should still be checked. The PDF uses ffill() (forward fill) to handle NaNs.

print("\nMissing values before cleaning (after initial load):")
print(dataset.isnull().sum())
dataset.fillna(method='ffill', inplace=True)
dataset.fillna(method='bfill', inplace=True)
print("\nMissing values after initial ffill/bfill:")
print(dataset.isnull().sum())
dataset.dropna(inplace=True) # Drop any remaining rows with NaNs, if any
print("Dataset shape after full NaN drop:", dataset.shape)

if dataset.empty:
 print("Dataset is empty after initial cleaning. Exiting.")
 exit()

The Timestamp column in the original PDF’s dataset (minute data) was not useful for
modeling and was dropped. For our daily data, the DatetimeIndex is useful and kept.

5.2. Preparing the Target Variable (signal)

The trading signal (our target variable) is generated by comparing a short-term moving
average (MAVG) with a long-term MAVG.

• If short-term MAVG > long-term MAVG: Buy signal (1)
• Otherwise: Sell signal (0)

We’ll use a 10-period rolling mean for the short-term MAVG and a 60-period rolling mean
for the long-term MAVG, applied to the ‘Close’ price.

short_window = 10
long_window = 60
dataset['short_mavg'] = dataset['Close'].rolling(window=short_window,
min_periods=1).mean()

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 9

dataset['long_mavg'] = dataset['Close'].rolling(window=long_window,
min_periods=1).mean()
dataset['signal'] = 0.0
valid_signal_idx_start = max(short_window, long_window) -1
if len(dataset) > valid_signal_idx_start :
 dataset.loc[dataset.index[valid_signal_idx_start:], 'signal'] = np.where(
 dataset['short_mavg'][valid_signal_idx_start:] >
dataset['long_mavg'][valid_signal_idx_start:], 1.0, 0.0
)

5.3. Feature Engineering: Technical Indicators

Raw price/volume data might not be sufficient for a model to learn complex patterns.
Technical indicators can extract underlying trend, momentum, volatility, and other
characteristics from the market data. We will create several common indicators to use as
features.

Technical Indicators to Implement:

1. Exponential Moving Average (EMA): Similar to SMA but gives more weight to recent
prices.

 where

2. Rate of Change (ROC): Measures the percentage change in price between the
current price and the price n periods

ago.

3. Momentum (MOM): Measures the absolute change in price
over n periods.

4. Relative Strength Index (RSI): A momentum oscillator that measures the speed
and change of price movements. RSI oscillates between 0 and 100.

o Typically, RSI > 70 indicates overbought conditions, and RSI < 30 indicates
oversold conditions.

o Calculation involves average gains and average losses over a

period.
5. Stochastic Oscillator (%K and %D): Compares a particular closing price of an

asset to a range of its prices over a certain period of time.

o %K Line:
o %D Line: Typically a 3-period SMA of %K (slow stochastic).

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 10

6. Moving Average (MA): Simple moving average (already used for signal, but can be

features too).

for n_ema in [10, 30, 200]:
 dataset[f'EMA{n_ema}'] = EMA(dataset['Close'], n_ema)
for n_roc in [10, 30]:
 dataset[f'ROC{n_roc}'] = ROC(dataset['Close'], n_roc)
for n_mom in [10, 30]:
 dataset[f'MOM{n_mom}'] = MOM(dataset['Close'], n_mom)
for n_rsi in [10, 30, 200]:
 dataset[f'RSI{n_rsi}'] = RSI(dataset['Close'], n_rsi)
stoch_periods = [10, 30, 200]
d_smooth_period = 3
for n_stoch in stoch_periods:
 dataset[f'%K_{n_stoch}'] = STOK(dataset['Close'], dataset['Low'],
dataset['High'], n_stoch)
 dataset[f'%D_{n_stoch}_{d_smooth_period}'] =
STOD(dataset[f'%K_{n_stoch}'], d_smooth_period)
for n_ma in [21, 63, 252]:
 dataset[f'MA{n_ma}'] = MA(dataset['Close'], n_ma)

initial_rows = len(dataset)
dataset.replace([np.inf, -np.inf], np.nan, inplace=True) # Replace infs
created by indicators like RSI if loss is 0
dataset.dropna(inplace=True)
print(f"\nDropped {initial_rows - len(dataset)} rows due to NaNs/infs from
feature engineering.")

if dataset.empty:
 print("Dataset is empty after feature engineering and NaN drop. Cannot
proceed.")
 exit()

5.4. Data Visualization (Post Feature Engineering)

Let’s check the distribution of our target variable signal after all data preparation.

plt.figure(figsize=(6, 4))
dataset['signal'].value_counts().plot(kind='barh', color=['skyblue',
'salmon'])
plt.title('Distribution of Trading Signal (1: Buy, 0: Sell)')
plt.xlabel('Frequency')
plt.ylabel('Signal')
plt.yticks(ticks=[0,1], labels=['Sell (0)', 'Buy (1)']) # Adjust based on
value_counts order
plt.show()
plt.savefig('bitcoin_signal_distribution.png')
print("\nSaved trading signal distribution plot to

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 11

bitcoin_signal_distribution.png")
plt.close()

The distribution might be relatively balanced or slightly skewed depending on the market
period and MAVG parameters. The PDF’s example shows it as relatively balanced.

6. Evaluate Algorithms and Models
6.1. Prepare Data for Modeling

Separate features (X) and target (y). Drop columns used for target creation if they are not
intended as features.

if 'signal' not in dataset.columns:
 print("Error: 'signal' column is missing from the dataset before
splitting.")
 exit()

features_to_drop_for_X = ['signal', 'short_mavg', 'long_mavg']
X = dataset.drop(columns=features_to_drop_for_X, errors='ignore')
y = dataset['signal']

X = X.apply(pd.to_numeric, errors='coerce').dropna(axis=1,
how='all').fillna(0)

if X.empty or len(X) != len(y) or X.shape[1] == 0:
 print("Feature set X is empty, mismatched with y, or has no columns after

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 12

final processing. Cannot proceed.")
 exit()

6.2. Train-Test Split

The PDF uses the last 100,000 observations for faster calculation. For daily data, this is a
very long period. Let’s use a standard chronological split for time series, e.g., 80% for
training, 20% for testing.

split_index = int(len(X) * 0.8)
if split_index < 1 or split_index >= len(X) -1 :
 print(f"Cannot perform train-test split with current data size: {len(X)}.
Need more data after NaN drops.")
 exit()

X_train = X.iloc[:split_index]
X_test = X.iloc[split_index:]
y_train = y.iloc[:split_index]
y_test = y.iloc[split_index:]

if X_train.empty or X_test.empty or y_train.empty or y_test.empty:
 print("Training or testing set is empty. Cannot proceed with model
evaluation.")
 exit()

6.3. Test Options and Evaluation Metric

Given the signal distribution, accuracy can be a reasonable starting metric if the classes
are somewhat balanced. We also need to look at precision, recall, and F1-score for
buy/sell signals.

scoring_metric = 'accuracy'
num_folds = 5
kfold = KFold(n_splits=num_folds, shuffle=True, random_state=42)

6.4. Compare Models and Algorithms

Spot-check various classification algorithms.

models_btc = []
models_btc.append(('LR', LogisticRegression(solver='liblinear', max_iter=200,
random_state=42)))
models_btc.append(('LDA', LinearDiscriminantAnalysis()))
models_btc.append(('CART', DecisionTreeClassifier(random_state=42)))
models_btc.append(('RF', RandomForestClassifier(random_state=42, n_jobs=-1)))
models_btc.append(('GBM', GradientBoostingClassifier(random_state=42)))

results_btc = []
names_btc = []
print(f"\nSpot-checking models using {scoring_metric}:")

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 13

for name, model in models_btc:
 try:
 cv_results = cross_val_score(model, X_train, y_train, cv=kfold,
scoring=scoring_metric, n_jobs=-1)
 results_btc.append(cv_results)
 names_btc.append(name)
 print(f"{name}: {cv_results.mean():.4f} ({cv_results.std():.4f})")
 except Exception as e:
 print(f"Could not evaluate {name}: {e}")

The PDF identifies Random Forest as performing well among ensemble models. Let’s
assume it’s a good candidate.

7. Model Tuning and Grid Search (Random Forest)

We’ll tune hyperparameters for Random Forest using GridSearchCV.

best_model_btc = None
chosen_model_name_for_tuning = 'RF'
model_to_tune_proto = None
for name, model_proto_iter in models_btc:
 if name == chosen_model_name_for_tuning:
 model_to_tune_proto = model_proto_iter
 break

if model_to_tune_proto is not None:
 param_grid = {
 'n_estimators': [50, 100], 'max_depth': [5, 10, None], 'criterion':
['gini', 'entropy']
 } if isinstance(model_to_tune_proto, RandomForestClassifier) else {
 'n_estimators': [50, 100], 'learning_rate': [0.05, 0.1], 'max_depth':
[3,5]
 }
 grid = GridSearchCV(estimator=model_to_tune_proto, param_grid=param_grid,
scoring=scoring_metric, cv=kfold, n_jobs=-1)
 try:
 grid_result = grid.fit(X_train, y_train)
 print(f"\nBest {scoring_metric} for {chosen_model_name_for_tuning}:
{grid_result.best_score_:.4f} using {grid_result.best_params_}")
 best_model_btc = grid_result.best_estimator_
 except Exception as e:
 print(f"GridSearchCV failed for {chosen_model_name_for_tuning}: {e}")
 best_model_btc = model_to_tune_proto
 print(f"Using default (untuned) {chosen_model_name_for_tuning}
parameters due to GridSearchCV error.")
 best_model_btc.fit(X_train, y_train)
else:
 print(f"\nModel '{chosen_model_name_for_tuning}' not found or CV failed.
Using a default RF.")

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 14

 best_model_btc = RandomForestClassifier(random_state=42,
n_estimators=100, n_jobs=-1)
 if not X_train.empty and not y_train.empty:
 best_model_btc.fit(X_train, y_train)
 else:
 print("Cannot fit default model as training data is empty.")
 best_model_btc = None

8. Finalize the Model and Evaluate
8.1. Results on the Test Dataset

Evaluate the tuned (or best chosen) model on the unseen test set.

if best_model_btc and not X_test.empty and not y_test.empty:
 y_pred_test = best_model_btc.predict(X_test)
 print(f"\nPerformance of Final Model
({best_model_btc.__class__.__name__}) on Test Set:")
 print(f"Accuracy: {accuracy_score(y_test, y_pred_test):.4f}")
 cm_test = confusion_matrix(y_test, y_pred_test)
 print("\nConfusion Matrix (Test Set):\n", cm_test)

 print("\nClassification Report (Test Set):")
 print(f"Unique values in y_test: {np.unique(y_test,
return_counts=True)}")
 print(f"Unique values in y_pred_test: {np.unique(y_pred_test,
return_counts=True)}")
 print(classification_report(y_test, y_pred_test, target_names=['Sell
(0)', 'Buy (1)'], labels=[0, 1], zero_division=0))

 if hasattr(best_model_btc, 'feature_importances_'):
 importances = best_model_btc.feature_importances_
 feature_names_original = X_train.columns

 str_feature_names = []
 for name in feature_names_original:
 if isinstance(name, tuple):
 str_feature_names.append('_'.join(map(str, name)))
 else:
 str_feature_names.append(str(name))

 feature_importance_df = pd.DataFrame({'feature': str_feature_names,
'importance': importances})
 feature_importance_df =
feature_importance_df.sort_values(by='importance', ascending=False)
 print("\nTop 15 Feature Importances (with stringified feature
names):")
 print(feature_importance_df.head(15))
 plt.figure(figsize=(10, 8))
 sns.barplot(x='importance', y='feature',

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 15

data=feature_importance_df.head(15), palette='viridis')
 plt.title(f'Top 15 Feature Importances -
{best_model_btc.__class__.__name__}')
 plt.xlabel('Importance')
 plt.ylabel('Feature')
 plt.tight_layout()
 # plt.savefig('bitcoin_feature_importance.png')
 print("\nSaved feature importance plot to
bitcoin_feature_importance.png")
 # plt.close()
else:
 print("\nNo model was finalized for evaluation or test set is empty.")

The model’s accuracy and other metrics on the test set give an indication of its real-world
performance. For tree-based models like Random Forest or GBM, we can examine feature
importances.

This helps understand which technical indicators were most influential in the model’s
predictions. Momentum indicators like RSI and MOM often show high importance.

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 16

9. Backtesting the Trading Strategy (Simplified)

Backtesting simulates how the strategy would have performed on historical data. We’ll
create a simple backtest:

• Calculate daily market returns.
• Calculate strategy returns by multiplying market returns by the predicted signal

from the previous day (since we trade on the next bar after a signal). A 1 means hold
(or buy if not holding), a 0 means be out of the market (or sell if holding). This is a
long-only interpretation for simplicity.

if best_model_btc and not X_test.empty and 'y_pred_test' in locals() and not
y_test.empty:
 backtest_df = pd.DataFrame(index=X_test.index)
 if 'Close' in dataset.columns and 'signal' in dataset.columns and
X_test.index.isin(dataset.index).all():
 backtest_df['Market_Returns'] = dataset.loc[X_test.index,
'Close'].pct_change()
 backtest_df['Predicted_Signal'] = y_pred_test
 backtest_df['Strategy_Returns'] = backtest_df['Market_Returns'] *
backtest_df['Predicted_Signal'].shift(1)
 backtest_df['Actual_MAVG_Signal_Returns'] =
backtest_df['Market_Returns'] * dataset.loc[X_test.index, 'signal'].shift(1)
 backtest_df.dropna(inplace=True)

 if not backtest_df.empty:
 backtest_df['Cumulative_Market_Returns'] = (1 +
backtest_df['Market_Returns']).cumprod() - 1
 backtest_df['Cumulative_Strategy_Returns'] = (1 +
backtest_df['Strategy_Returns']).cumprod() - 1
 backtest_df['Cumulative_Actual_MAVG_Signal_Returns'] = (1 +
backtest_df['Actual_MAVG_Signal_Returns']).cumprod() - 1
 print("\nBacktesting Results (Last 5 days):\n",
backtest_df.tail())
 plt.figure(figsize=(14, 7))
 backtest_df['Cumulative_Market_Returns'].plot(label='Market (Buy
& Hold BTC)', color='gray', linestyle='--')
 backtest_df['Cumulative_Strategy_Returns'].plot(label='ML
Strategy Returns', color='blue')

backtest_df['Cumulative_Actual_MAVG_Signal_Returns'].plot(label='Original
MAVG Signal Returns', color='orange')
 plt.title('Cumulative Returns Comparison')
 plt.ylabel('Cumulative Returns')
 plt.legend()
 plt.tight_layout()
 # plt.savefig('bitcoin_backtest_returns.png')
 print("\nSaved backtesting returns plot to
bitcoin_backtest_returns.png")

Algorithmic Bitcoin Trading Strategy using Machine Learning Classification 17

 # plt.close()
 else:
 print("\nBacktest DataFrame is empty after processing; cannot
plot returns.")
 else:
 print("\nCould not perform backtesting: 'Close' or 'signal' column
missing or index mismatch.")
else:
 print("\nSkipping backtesting as no model was finalized or
test/prediction data is unavailable.")

print("\n--- Tutorial: Algorithmic Bitcoin Trading Strategy Finished ---")

The plot comparing cumulative returns helps assess if the machine learning strategy
added value over a simple buy-and-hold or the original MAVG crossover rule.

10. Conclusion and Next Steps

This tutorial demonstrated a complete workflow for building a Bitcoin trading strategy
using machine learning classification. We covered:

• Defining the problem as a classification task.
• Fetching real market data using yfinance.
• Extensive feature engineering using technical indicators.
• Training, tuning, and evaluating various classification models.
• Assessing feature importance.
• Performing a simplified backtest.

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 18

The results of such a strategy can vary greatly depending on the chosen period, features,
model, and market conditions. Key takeaways include the importance of robust feature
engineering and careful model evaluation.

Further improvements and considerations could include:

• More sophisticated feature engineering (e.g., volatility measures, order book data if
available).

• Different ways to define the target variable (e.g., predicting price change magnitude,
multi-class signals like buy/sell/hold).

• Advanced backtesting with considerations for transaction costs, slippage, and risk
management.

• Time series cross-validation techniques.
• Exploring more complex models like LSTMs or other deep learning architectures,

though they require more data and computational resources.

This framework provides a solid foundation for developing and testing algorithmic trading
strategies based on machine learning.

Build Your Own AI Coding Assistant From Plan to
Execution with Python and Ollama
In today’s fast-paced development world, Large Language Models (LLMs) are becoming
invaluable assistants. But what if you could build an AI agent that not only writes code but
also plans its approach, asks for your approval, and even debugs its own work until it’s
successful?

This tutorial will guide you through creating such an AI Coding Assistant using Python, the
LangChain library for interacting with LLMs, and Ollama to run powerful open-source
models locally. Our agent will take your request, propose a plan, get your green light, write
the code, test it, debug it iteratively if needed, and finally, engage you with a thoughtful
follow-up.

1. What You’ll Build:

An AI agent that can:

1. Understand Your Goal: Take a natural language request for a Python script.
2. Propose a Plan: Ask an LLM to outline a high-level plan (in pseudocode) to achieve

the goal.
3. Seek Your Confirmation: Present the plan to you for approval, allowing for one

round of adjustments.
4. Generate Code: Instruct the LLM to write the full Python script based on the

approved plan.

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 19

5. Execute and Test: Run the generated script.
6. Iteratively Debug: If the script fails, the agent feeds the error and the faulty code

back to the LLM to get a corrected version, repeating this process until the script
works or a maximum number of attempts is reached.

7. Engage with Follow-up: After a successful execution, the agent uses the LLM to
ask you a relevant follow-up question, demonstrating contextual awareness.

2. Prerequisites:

• Python 3.7+: Ensure Python is installed on your system.

• Ollama: You need Ollama installed and running. Ollama allows you to run open-
source LLMs like Llama 3, Mistral, Gemma, etc., locally.

o Download Ollama: https://ollama.ai/

o Pull a model: After installing Ollama, pull a model you want to use. For
example, in your terminal:

 ollama pull gemma3:12b

• LangChain Libraries: Install the necessary Python packages:

 pip install langchain langchain-community

3. Code Deep Dive

Let’s break down the script’s components.

3.1. Configuration

import os, re, subprocess
from langchain_community.llms import Ollama
import warnings

warnings.filterwarnings(action="ignore")

--- Configuration ---
MODEL_NAME = "gemma3:12b" # Your Ollama model tag
MAX_ATTEMPTS = 5 # How many retry loops before giving up
PROMPT_FILE = "prompt.txt" # Optional text file for your request
TEMP_SCRIPT = "temp_script.py" # Where generated scripts get saved

Patterns to catch errors even when exit code == 0
ERROR_PATTERNS = [
 r"Traceback \(most recent call last\):",
 r"Exception:", r"Error occurred", r"Error:",
 r"SyntaxError:", r"NameError:", r"TypeError:", r"AttributeError:",
 r"ImportError:", r"IndexError:", r"KeyError:", r"ValueError:",

https://ollama.ai/

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 20

r"FileNotFoundError:"
]

• MODEL_NAME: Specifies the Ollama model tag. Crucially, change this to a model
you have downloaded.

• MAX_ATTEMPTS: The maximum number of times the agent will try to generate and
debug code for a single request after the plan is approved.

• PROMPT_FILE: An optional text file (e.g., prompt.txt) where you can write your
detailed script request. If this file isn’t found, the agent will ask for input directly.

• TEMP_SCRIPT: The filename used to save and execute the LLM-generated Python
code.

• ERROR_PATTERNS: A list of regular expressions used to scan the output of the
generated script for common error indicators.

3.2. Helper Functions

These functions perform essential tasks:

• extract_code_block(text: str) -> str | None:

 def extract_code_block(text: str) -> str | None:
 if not text:
 return None
 m = re.search(r"```(?:python)?\s*(.*?)\s*```", text, re.DOTALL)
 return m.group(1).strip() if m else None

 Uses regular expressions to find and extract Python code enclosed in Markdown-
style triple backticks (e.g., python ... or ...). The re.DOTALL flag is important for
code blocks that span multiple lines.

• run_script(path: str, timeout: int = 180) -> tuple[int, str]:

 def run_script(path: str, timeout: int = 180) -> tuple[int, str]:
 try:
 p = subprocess.run(
 ["python", path], capture_output=True, text=True,
 timeout=timeout, check=False
)
 return p.returncode, (p.stdout or "") + (p.stderr or "")
 except subprocess.TimeoutExpired:
 return -1, f"������� Timeout after {timeout}s"
 except FileNotFoundError:
 return -1, f"�� Script '{path}' not found."
 except Exception as e:
 return -1, f"�� Error running script: {e}"

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 21

 Executes the Python script saved at path using subprocess.run. It

captures stdout and stderr, returns the script’s exit code, and handles potential
timeouts or other execution errors.

• invoke_llm(llm_instance: Ollama, prompt: str, extract_code: bool =
True) -> tuple[str|None, str]:

 def invoke_llm(llm_instance: Ollama, prompt: str, extract_code: bool =
True) -> tuple[str|None, str]:
 print("��� Thinking…")
 full = llm_instance.invoke(prompt)
 if extract_code:
 return extract_code_block(full), full
 return full, full

 This is the gateway to your LLM. It sends a prompt, gets the full_response, and
optionally tries to extract a code block. It prints a “Thinking…” message to let you
know the LLM is working, keeping the actual prompt hidden for a cleaner interface.

• save_code(code: str, path: str): A straightforward function to write the LLM-
generated code to TEMP_SCRIPT.

• output_has_errors(output: str) -> bool: Checks if the script’s captured output
string contains any of the patterns listed in ERROR_PATTERNS. This helps detect
failures even if the script exits with a return code of 0.

3.3. The main() Function: Orchestrating the Agent

This is where the magic happens, following a clear, phased approach:

Phase 1 & 2: LLM Initialization and Loading User Request

def main_interactive_loop():
 print("\n����� AI Agent: Plan ▶ Confirm ▶ Generate ▶ Debug ▶ Follow-up
�����\n")

 llm = None # Initialize llm to None
 try:
 llm = Ollama(model=MODEL_NAME)
 print(f"�������� LLM '{MODEL_NAME}' initialized.")
 except Exception as e:
 print(f"� Cannot start LLM '{MODEL_NAME}': {e}")
 print(" Ensure Ollama is running and the model name is correct
(e.g., 'ollama list' to check).")
 return

 user_req_original = "" # This will be updated in each iteration of the
outer loop

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 22

 # Outer loop for continuous interaction
 while True:
 # 2) Load User Request (or get follow-up as new request)
 if not user_req_original: # First time or after an explicit 'new'
 if os.path.isfile(PROMPT_FILE) and os.path.getsize(PROMPT_FILE) >
0: # Check if prompt file exists and is not empty
 try:
 with open(PROMPT_FILE, 'r+', encoding="utf-8") as f: #
Open in r+ to read and then truncate
 user_req_original = f.read().strip()
 f.seek(0) # Go to the beginning of the file
 f.truncate() # Empty the file
 if user_req_original:
 print(f"���� Loaded request from '{PROMPT_FILE}' (file
will be cleared after use).")
 else: # File was empty
 user_req_original = input("Enter your Python-script
request (or type 'exit' to quit): ").strip()
 except Exception as e:
 print(f"Error reading or clearing {PROMPT_FILE}: {e}")
 user_req_original = input("Enter your Python-script
request (or type 'exit' to quit): ").strip()
 else:
 user_req_original = input("Enter your Python-script request
(or type 'exit' to quit): ").strip()

 if user_req_original.lower() == 'exit':
 print("��������� Exiting agent.")
 break
 if not user_req_original:
 print("� No request provided. Please enter a request or type
'exit'.")
 user_req_original = "" # Reset to ensure it asks again
 continue

 current_contextual_request = user_req_original # Initialize for the
current task cycle

The LLM is initialized. Note the absence of StreamingStdOutCallbackHandler to prevent
token-by-token printing of the LLM’s raw response. The user’s initial request for the script
is loaded either from prompt.txt or by asking for input.

Phase 3: Planning and User Confirmation

3) PLAN PHASE
 plan_approved = False
 plan_code = ""

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 23

 for plan_attempt in range(2): # Allow one initial plan + one
adjustment attempt
 print(f"\n��� Phase: Proposing Plan (Attempt {plan_attempt + 1}/2
for current request)")
 plan_prompt = (
 "You are an expert Python developer and system architect.\n"
 "Your task is to create a super short super high-level plan
just in 3 to 5 sentences "
 "(in Python-style pseudocode with numbered comments) "
 "to implement the following user request. Do NOT write the
full Python script yet, only the plan.\n\n"
 f"User Request:\n'''{current_contextual_request}'''\n\n"
 "Instructions for your plan:\n"
 "- Use numbered comments (e.g., # 1. Initialize
variables).\n"
 "- Keep it high-level but clear enough to guide
implementation.\n"
 "- Wrap ONLY the pseudocode plan in a ```python ... ```
block."
)
 extracted_plan, plan_resp_full = invoke_llm(llm, plan_prompt)

 if not extracted_plan:
 print(f"� LLM did not return a plan in the expected format
(attempt {plan_attempt + 1}).")
 if plan_attempt == 0:
 retry_plan = input("Try generating plan again? (Y/n):
").strip().lower()
 if retry_plan not in ("", "y", "yes"):
 print("Aborting plan phase for current request.")
 # Go to end of inner task cycle, which will then loop
outer for new request
 plan_code = None # Signal plan failure
 break
 else: # Second attempt also failed
 print("Aborting plan phase after adjustment attempt
failed.")
 plan_code = None # Signal plan failure
 break
 continue # To next plan attempt

 plan_code = extracted_plan
 print("\n��������� Here’s the proposed plan:\n")
 print(plan_code)

 ok = input("\nIs this plan OK? (Y/n/edit) ").strip().lower()
 if ok in ("", "y", "yes"):
 plan_approved = True

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 24

 print("�� Plan approved by user.")
 break
 elif ok == "edit":
 adjustment_notes = input("What should be adjusted in the plan
or original request? (Your notes will be added to the request context):
").strip()
 if adjustment_notes:
 current_contextual_request =
f"{user_req_original}\n\nUser's Plan Adjustment
Notes:\n'''{adjustment_notes}'''"
 print("�� Plan adjustment notes added. Regenerating
plan...")
 else:
 print("No adjustment notes provided. Assuming current
plan is OK.")
 plan_approved = True
 break
 else:
 print("Plan not approved. This task will be skipped.")
 plan_code = None # Signal plan rejection
 break # Exit plan loop for this task

 if not plan_approved or not plan_code:
 print("� Plan not finalized or approved for the current
request.")
 user_req_original = "" # Reset to ask for a new request in the
next outer loop iteration
 print("-" * 30)
 continue # Go to next iteration of the outer while loop

This is a crucial interactive step.

• A carefully crafted plan_prompt asks the LLM for a short, high-level pseudocode
plan (3-5 sentences as per your latest script’s prompt addition), not the full code.

• The extracted plan is shown to you.
• You can type Y (or just Enter) to approve, n to reject (which exits), or edit.
• If you choose edit, you can provide adjustment notes. These notes are appended to

the original request to form current_contextual_request, and the agent tries to
generate an updated plan (one retry).

Phase 4: Code Generation and Iterative Debugging

4) GENERATE & DEBUG PHASE
 print("\n��� Phase: Generating and Debugging Code...")
 last_script_output = ""
 final_working_code = ""
 script_succeeded_this_cycle = False

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 25

 for attempt in range(1, MAX_ATTEMPTS + 1):
 print(f"��� Code Generation/Debug Attempt
{attempt}/{MAX_ATTEMPTS}")
 gen_prompt = ""
 # ... (gen_prompt logic for attempt 1 and debug attempts -
remains the same) ...
 if attempt == 1:
 gen_prompt = (
 "You are an expert Python programmer.\n"
 "Based on the following **approved plan**:\n"
 f"```python\n{plan_code}\n```\n\n"
 "And the original user request (with any adjustment
notes):\n"
 f"'''{current_contextual_request}'''\n\n"
 "Write a Python script as short and simple as possible.
Ensure all necessary imports are included. "
 "Focus on fulfilling the plan and request accurately.\n"
 "Wrap your answer ONLY in a ```python ... ``` code block.
No explanations outside the block."
)
 else: # Debugging
 gen_prompt = (
 "You are an expert Python debugger.\n"
 "The goal was to implement this plan:\n"
 f"```python\n{plan_code}\n```\n"
 "And this overall request:\n"
 f"'''{current_contextual_request}'''\n\n"
 "The previous attempt at the script was:\n"
 f"```python\n{final_working_code}\n```\n"
 "Which produced this output (indicating errors):\n"
 f"```text\n{last_script_output}\n```\n\n"
 "Please meticulously analyze the errors, the code's
deviation from the plan, and the original request. "
 "Provide a **fully corrected, complete Python script**
that fixes the issues and aligns with the plan and request. "
 "Wrap your answer ONLY in a ```python ... ``` code
block."
)

 code_block, code_resp_full = invoke_llm(llm, gen_prompt)
 if not code_block:
 print(f"� LLM did not return a code block in attempt
{attempt}.")
 if attempt == MAX_ATTEMPTS: break
 last_script_output = f"LLM failed to provide a code block.
Response: {code_resp_full}"
 continue

 final_working_code = code_block

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 26

 save_code(final_working_code, TEMP_SCRIPT)
 print(f"������ The followig script generated and saved to
'{TEMP_SCRIPT}':\n\n f{final_working_code}.\n\n Running…")

 rc, out = run_script(TEMP_SCRIPT)
 print(f" ▶ Script Return code: {rc}")
 if len(out or "") < 600: print(f" �������� Script Output:\n{out}")
 else: print(f" �������� Script Output (last 500 chars):\n{(out or
'')[-500:]}")
 last_script_output = out

Once the plan is approved:

• Initial Generation: For attempt == 1, gen_prompt instructs the LLM to write the full
Python script based on plan_code and current_contextual_request. Your script
now includes “Write a Python script as short and simple as possible.”

• Debugging: If the script fails (non-zero rc or error patterns in out), for subsequent
attempts, gen_prompt provides the LLM with:

o The original plan and request.
o The final_working_code (which was the code that just failed).
o The last_script_output (the error messages from the failed run). It

explicitly asks the LLM to analyze and correct the script.
• This loop continues for MAX_ATTEMPTS.

Phase 5: Follow-up Question (After Success)

 if rc == 0 and not output_has_errors(out):
 print("\n��������������� Success! Script ran cleanly for the current
request.")
 script_succeeded_this_cycle = True
 break # Exit debug loop on success
 else:
 print("��� Errors detected or non-zero return code; will
attempt to debug...")

 if not script_succeeded_this_cycle:
 print(f"\n� All {MAX_ATTEMPTS} debug attempts exhausted for the
current request. Last script is in '{TEMP_SCRIPT}'.")
 user_req_original = "" # Reset to ask for new request
 print("-" * 30)
 continue # Go to next iteration of the outer while loop

 # 5) FOLLOW-UP QUESTION PHASE (Only if script_succeeded_this_cycle is
True)
 print("\n��� Phase: Follow-up")
 follow_up_context_prompt = (

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 27

 "You are a helpful AI assistant.\n"
 "The user had an initial request:\n"
 f"'''{user_req_original}'''\n" # Use the original request for
this specific cycle for context
 "An execution plan was approved:\n"
 f"```python\n{plan_code}\n```\n"
 "The following Python script was successfully generated and
executed to fulfill this:\n"
 f"```python\n{final_working_code}\n```\n"
 "The script's output (last 500 chars) was:\n"
 f"```text\n{last_script_output[-500:]}\n```\n\n"
 "Now, explain the code first very shortly and then ask the user a
concise and relevant follow-up question based on this success. "
 "For example, ask if they want to modify the script, save its
output differently, "
 "run it with new parameters, or tackle a related task. Do not
wrap your question in any special tags."
)
 follow_up_question_text, _ = invoke_llm(llm,
follow_up_context_prompt, extract_code=False)
 print(f"\n�������� Assistant: {follow_up_question_text.strip()}")

 user_response_to_follow_up = input("Your response (or type 'new' for
a new unrelated task, 'exit' to quit): ").strip()

 if user_response_to_follow_up.lower() == 'exit':
 print("��������� Exiting agent.")
 break # Exit outer while loop
 elif user_response_to_follow_up.lower() == 'new':
 user_req_original = "" # Clear it so it asks for a fresh prompt
 else:
 # Treat the response as a new request, potentially related to the
last one.
 # The LLM doesn't have explicit memory of this Q&A for the *next*
planning phase
 # unless we build that into the prompt. For now, it's a new
user_req_original.
 user_req_original = "The following Python script was successfully
generated and executed to fulfill this:\n"
 f"```python\n{final_working_code}\n```\n" + \
 "user had the following follow-up request:" + \
 user_response_to_follow_up

 print("-" * 30) # Separator for the next cycle

If the script runs successfully:

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 28

• A detailed follow_up_context_prompt is constructed, giving the LLM the full story:

the initial request, the plan, the successful code, and a snippet of its output.
• The LLM is then tasked to ask you a relevant follow-up question. This demonstrates

a simple form of memory and contextual awareness.
• The agent prints the LLM’s question and then exits. (For a continuous conversation,

you’d add an input loop here).

4. How to Use the AI Coding Assistant

1. Save the Code: Copy the entire Python script above and save it as a file, for
example, ai_agent.py.

2. Set MODEL_NAME: Open ai_agent.py and change the MODEL_NAME variable to the
exact tag of an LLM you have downloaded in Ollama
(e.g., "llama3:8b", "mistral:latest", "gemma2:9b").

3. Run Ollama: Ensure your Ollama application is running and the chosen model is
available.

4. Run the Agent: Open your terminal or command prompt, navigate to the directory
where you saved ai_agent.py, and run:

 python ai_agent.py

5. Interact:

o The agent will ask for your request.
o It will show you a “Thinking…” message and then present a plan.
o Respond with Y (or Enter) to approve, n to reject, or edit to provide

adjustment notes.
o If approved, it will generate and test the code, showing you script outputs

and success/failure status.
o If successful, it will ask a follow-up question.

Example Interaction:

����� AI Agent: Plan ▶ Confirm ▶ Generate ▶ Debug ▶ Follow-up �����

�������� LLM 'gemma3:12b' initialized.
Enter your Python-script request (or type 'exit' to quit): get financial
statements for tesla from yahoo finance and store them in csv files.

��� Phase: Proposing Plan (Attempt 1/2 for current request)
��� Thinking...

��������� Here’s the proposed plan:

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 29

1. Define functions: fetch_financial_data(ticker) to retrieve data from
Yahoo Finance API, and save_to_csv(data, filename) to store it.
2. Initialize ticker symbol (e.g., "TSLA") and a list of financial
statement types (e.g., ["income_stmt", "balance_sheet", "cash_flow"]).
3. Iterate through the list of financial statement types, calling
fetch_financial_data() for each, and then save_to_csv() to store the
retrieved data as CSV files.
4. Implement error handling within the loop to manage potential API issues
or data retrieval failures (e.g., try-except blocks).
5. Add a main execution block to run the process only when the script is
run directly, ensuring reusability.

Is this plan OK? (Y/n/edit) y
�� Plan approved by user.

��� Phase: Generating and Debugging Code...
��� Code Generation/Debug Attempt 1/5
��� Thinking...
������ The followig script generated and saved to 'temp_script.py':

 fimport yfinance as yf
import pandas as pd

def fetch_financial_data(ticker):
 try:
 data = yf.Ticker(ticker).financials
 return data
 except Exception as e:
 print(f"Error fetching data for {ticker}: {e}")
 return None

def save_to_csv(data, filename):
 try:
 if data is not None:
 data.to_csv(filename)
 print(f"Data saved to {filename}")
 else:
 print(f"No data to save to {filename}")
 except Exception as e:
 print(f"Error saving to {filename}: {e}")

if __name__ == "__main__":
 ticker = "TSLA"
 financial_statements = ["income_stmt", "balance_sheet", "cash_flow"]

 for statement_type in financial_statements:

Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama 30

 data = fetch_financial_data(ticker)
 if data is not None:
 filename = f"{ticker}_{statement_type}.csv"
 save_to_csv(data, filename).

 Running…
 ▶ Script Return code: 0
 �������� Script Output:
Data saved to TSLA_income_stmt.csv
Data saved to TSLA_balance_sheet.csv
Data saved to TSLA_cash_flow.csv

��������������� Success! Script ran cleanly for the current request.

��� Phase: Follow-up
��� Thinking...

�������� Assistant: The code retrieves financial statements (income statement,
balance sheet, and cash flow) for Tesla (TSLA) from Yahoo Finance using the
`yfinance` library and saves each statement as a separate CSV file. Error
handling is included to manage potential issues during data fetching or
saving.

Would you like to modify the script to retrieve data for a different ticker
symbol?
Your response (or type 'new' for a new unrelated task, 'exit' to quit): exit
��������� Exiting agent.

5. Key Concepts Demonstrated

• LLM as a Multi-Role Tool: Used for planning, code generation, debugging, and even
generating conversational follow-ups.

• Prompt Engineering: The script uses different, carefully crafted prompts for each
distinct task (planning, initial code generation, debugging, follow-up). The quality of
these prompts heavily influences the LLM’s performance.

• Iterative Refinement: The debugging loop is a prime example of iterative
refinement, where the agent learns from failures.

• User-in-the-Loop: The plan confirmation stage ensures human oversight and
alignment before significant computation (code generation) occurs.

• Local and Private AI: By using Ollama, the entire process can run locally, keeping
your requests and code private.

6. Potential Improvements & Customization

This agent is a strong foundation. Here are some ideas to extend it:

Can Kalman Filters Improve Your Trading Signals 31

• Advanced Plan Refinement: Instead of just one adjustment, allow a multi-turn

dialogue to refine the plan.
• Persistent Memory for Follow-ups: Use LangChain’s ConversationChain and

memory modules if you want the follow-up interaction to be a longer, stateful
conversation.

• Tool Usage: For more complex tasks, explore LangChain Agents that can use tools
(e.g., web search for API docs, file system access).

• GUI/Web Interface: Create a more user-friendly interface instead of the command
line.

• Saving Successful Scripts: Automatically save successfully generated scripts with
meaningful names instead of just temp_script.py.

• More Sophisticated Error Analysis: Instead of just regex patterns, use the LLM to
analyze the stderr more deeply to understand the root cause of errors during
debugging.

• Cost/Token Management: If using paid LLM APIs (not the case with local Ollama
here, but for future reference), tracking token usage would be important.

7. Conclusion

You’ve now explored the architecture of an AI Coding Assistant that goes beyond simple
code generation. By incorporating planning, user confirmation, and robust iterative
debugging, this agent provides a more intelligent and collaborative approach to leveraging
LLMs for development tasks. The ability to run this locally with Ollama opens up many
possibilities for customization and private, powerful AI assistance. Experiment with
different models, refine the prompts, and happy coding!

Can Kalman Filters Improve Your Trading Signals
Kalman filters offer an advanced technique for signal processing, often used to extract
underlying states, like trend or velocity, from noisy data. Applying this to financial markets
allows us to estimate price movements potentially more adaptively than standard
indicators.

This article details a backtrader strategy using a Kalman filter (via a
custom KalmanFilterIndicator) to estimate price velocity. The strategy enters trades
based on the sign of this estimated velocity and relies exclusively on a trailing stop-loss for
exits.

Strategy Logic Overview:

1. Filtering: A KalmanFilterIndicator estimates the underlying price and its velocity
based on closing prices.

Can Kalman Filters Improve Your Trading Signals 32

2. Entry Signal: Enter long if the estimated velocity turns positive (> 0). Enter short if

the velocity turns negative (< 0). Entries only happen when flat.
3. Exit Signal: A percentage-based trailing stop-loss (trail_percent) manages exits.

Once a position is open, the Kalman velocity sign is ignored for exiting.

The Supporting Indicator: KalmanFilterIndicator

(The code for KalmanFilterIndicator as you provided it is assumed here. It
calculates kf_price and kf_velocity and is set to plot on the main chart panel
using plotinfo = dict(subplot=False)).

The Strategy Class: KalmanFilterTrendWithTrail

This class orchestrates the trading logic using the indicator’s output.

1. Parameters (params)

These allow configuration of the filter and the trailing stop.

--- Inside KalmanFilterTrendWithTrail class ---
 params = (
 # Parameters passed to the Kalman Filter Indicator
 ('process_noise', 1e-5), # Filter parameter: Assumed noise in the
price model (Q)
 ('measurement_noise', 1e-1),# Filter parameter: Assumed noise in the
price data (R)

 # Strategy-specific parameter
 ('trail_percent', 0.05), # Trailing stop loss percentage (e.g.,
0.05 = 5%)
 ('printlog', True), # Enable logging output
)

• process_noise & measurement_noise: Control the Kalman filter’s behavior. Finding
good values requires testing and optimization specific to the asset and timeframe.

• trail_percent: Determines the percentage drawdown from the peak price (for
longs) or trough price (for shorts) that triggers the stop-loss.

2. Initialization (__init__)

Sets up the strategy by creating the indicator instance.

--- Inside KalmanFilterTrendWithTrail class ---
 def __init__(self):
 # Instantiate the Kalman Filter Indicator, passing relevant
parameters
 self.kf = KalmanFilterIndicator(
 process_noise=self.p.process_noise,
 measurement_noise=self.p.measurement_noise

Can Kalman Filters Improve Your Trading Signals 33

)

 # Create convenient references to the indicator's output lines
 self.kf_price = self.kf.lines.kf_price
 self.kf_velocity = self.kf.lines.kf_velocity

 # Initialize order trackers
 self.order = None # Tracks pending entry orders
 self.stop_order = None # Tracks pending stop orders

 if self.params.printlog:
 # Log the parameters being used
 print(f"Strategy Parameters: Process
Noise={self.params.process_noise}, "
 f"Measurement Noise={self.params.measurement_noise}, "
 f"Trail Percent={self.params.trail_percent * 100:.2f}%")

3. Entry Logic (next)

The next method contains the core logic executed on each bar. For entries, it checks the
position status and the Kalman velocity sign.

--- Inside KalmanFilterTrendWithTrail class ---
 def next(self):
 # If an entry order is pending, do nothing
 if self.order:
 return

 # Get the estimated velocity from the indicator
 # Need to check length because indicator might need warmup
 if len(self.kf_velocity) == 0:
 return # Indicator not ready yet

 estimated_velocity = self.kf_velocity[0]
 current_position_size = self.position.size
 current_close = self.data.close[0] # For logging

 # --- Trading Logic ---
 # Only evaluate entries if FLAT
 if current_position_size == 0:
 if self.stop_order: # Safety check - cancel any stray stop orders
if flat
 self.log("Warning: Position flat but stop order exists.
Cancelling.", doprint=True)
 self.cancel(self.stop_order)
 self.stop_order = None

 # --- Entry Signal Check ---
 if estimated_velocity > 0:

Can Kalman Filters Improve Your Trading Signals 34

 # Positive velocity -> Go Long
 self.log(f'BUY CREATE (KF Vel > 0),
Close={current_close:.2f}, KF Vel={estimated_velocity:.4f}', doprint=True)
 self.order = self.buy() # Place buy order and track it
 elif estimated_velocity < 0:
 # Negative velocity -> Go Short
 self.log(f'SELL CREATE (KF Vel < 0 - Short Entry),
Close={current_close:.2f}, KF Vel={estimated_velocity:.4f}', doprint=True)
 self.order = self.sell() # Place sell order and track it
 else:
 # If already in a position, do nothing here.
 # The trailing stop placed via notify_order handles the exit.
 pass

This logic is straightforward: if flat, buy on positive velocity, sell on negative velocity. If
already in a position, it relies entirely on the trailing stop.

4. Exit Logic (notify_order)

Exits are handled by placing a StopTrail order immediately after an entry order is
successfully filled. This logic resides within the notify_order method.

--- Inside KalmanFilterTrendWithTrail class ---
 def notify_order(self, order):
 # (Initial checks for Submitted/Accepted status omitted for brevity)
 ...
 if order.status == order.Completed:
 # Check if it's the ENTRY order we were waiting for
 if self.order and order.ref == self.order.ref:
 entry_type = "BUY" if order.isbuy() else "SELL"
 exit_func = self.sell if order.isbuy() else self.buy #
Determine exit order type

 # Log entry execution (code omitted for brevity)
 ...

 # Place the TRAILING STOP order if trail_percent is valid
 if self.p.trail_percent and self.p.trail_percent > 0.0:
 self.stop_order = exit_func(exectype=bt.Order.StopTrail,

trailpercent=self.p.trail_percent)
 self.log(f'Trailing Stop Placed for {entry_type} order
ref {self.stop_order.ref} at {self.p.trail_percent * 100:.2f}% trail',
doprint=True)
 else:
 self.log(f'No Trailing Stop Placed
(trail_percent={self.p.trail_percent})', doprint=True)

 self.order = None # Reset entry order tracker

Can Kalman Filters Improve Your Trading Signals 35

 # Check if it's the STOP order that completed
 elif self.stop_order and order.ref == self.stop_order.ref:
 # Log stop execution (code omitted for brevity)
 ...
 self.stop_order = None # Reset stop order tracker
 self.order = None # Reset entry tracker too
 # Handle Failed orders (code omitted for brevity)
 ...

This ensures that as soon as an entry trade is confirmed, the trailing stop is activated to
manage the exit.

Running the Backtest

The __main__ block in your provided code sets up cerebro, fetches data (BTC-USD, 2021-
2023), configures the broker/sizer/analyzers, and runs the strategy with specific
parameters (process_noise=0.001, measurement_noise=0.5, trail_percent=0.02). It
then prints performance metrics and attempts to plot the results, including the Kalman
Filter price overlayed on the main chart.

Tuning and Considerations

• Parameter Sensitivity: This strategy’s performance is highly dependent on
the process_noise, measurement_noise, and trail_percent parameters. The
values used (0.001, 0.5, 0.02) are specific examples and likely require optimization
for different market conditions or assets.

Decision Tree Learning 36

• Whipsaws: Using only the sign of the velocity can lead to frequent entries and exits

(whipsaws) in non-trending or choppy markets, potentially hurting performance
even with a trailing stop.

• Model Limitations: The constant velocity model is a simplification. Real market
dynamics are more complex.

• Optimization: Thorough backtesting and optimization across various parameter
combinations are essential to evaluate the strategy’s potential robustness.

Conclusion

This backtrader strategy demonstrates using a Kalman filter’s velocity estimate for trend
direction signals, combined with a trailing stop for risk management. While conceptually
interesting, its practical effectiveness hinges critically on careful parameter tuning and
understanding its limitations, particularly the sensitivity to noise when using only the
velocity sign for entries.

Decision Tree Learning
Decision Tree Learning

Decision tree learning is a supervised machine learning method used in statistics and data
mining. It involves creating a predictive model in the form of a classification or regression
tree based on a set of observations. Classification trees are used when the target variable
has discrete values, representing class labels, while regression trees are employed for
continuous values. Decision trees are popular for their simplicity and intelligibility. They
visually represent decisions and decision-making processes, making them useful in
decision analysis. In data mining, decision trees describe data, and the resulting
classification tree can be used for decision-making.

Decision tree learning is widely used in data mining is aiming to create a predictive model
for a target variable based on multiple input variables. In this context, a decision tree is a
straightforward representation used for classifying examples. Assuming finite discrete
domains for input features and a single target feature called “classification,” the decision
tree comprises nodes labeled with input features and branches labeled with possible

Decision Tree Learning 37

values of the target

feature.

The tree-building process involves recursively splitting the source set into subsets based
on classification features, creating internal nodes and decision paths. This top-down
induction of decision trees is a greedy algorithm, where each node is split to maximize
predictive value. The recursion stops when subsets have uniform values for the target
variable, or further splitting adds minimal predictive value.

The data consists of records in the form ((, Y)=(x_1, x_2, x_3, , x_k, Y)), where (Y) is the target
variable, and () is the feature vector used for the task.

Types of Decision Trees

Decision trees used in data mining can be categorized into two main types:

· Classification Tree: This type predicts the class (discrete) to which the data belongs.
Each leaf node in the tree represents a class label, and the branches represent
conjunctions of features leading to those labels.

· Regression Tree: This type predicts outcomes that can be considered real numbers,
such as the price of a house or a patient’s length of stay in a hospital.

The term Classification and Regression Tree (CART) refers to both procedures, and it was
introduced by Breiman et al. in 1984. While classification and regression trees share
similarities, there are differences, particularly in the procedure used to determine where to
split.

Ensemble methods, known as boosted trees and bagged decision trees, construct
multiple decision trees for improved performance:

· Boosted Trees: Incrementally builds an ensemble by training each new instance to
emphasize the training instances previously mis-modeled. AdaBoost is a typical example,
applicable to both regression and classification problems.

Decision Tree Learning 38

· Bootstrap Aggregated (Bagged) Decision Trees: Builds multiple decision trees by
repeatedly resampling training data with replacement, and the trees vote for a consensus
prediction.

· Random Forest Classifier: A specific type of bootstrap-aggregated decision trees.

· Rotation Forest: Each decision tree is trained by first applying principal component
analysis (PCA) on a random subset of the input features.

Notable decision tree algorithms include ID3 (Iterative Dichotomiser 3), C4.5 (a successor
of ID3), and CART (Classification And Regression Tree). These algorithms were developed
independently but follow a similar approach for learning decision trees from training
tuples.

Additionally, concepts from fuzzy set theory have been proposed for a special version of a
decision tree known as Fuzzy Decision Tree (FDT), where an input vector is associated with
multiple classes, each having a different confidence value. Boosted ensembles of FDTs
have been suggested for improved performance.

Let’s take a brief look at two algorithms in the following.

ID3 Algorithm

The ID3 algorithm begins with the original set (S) as as the root node. On each iteration of
the algorithm, it iterates through every unused attribute of the set (S) and calculates
the entropy (H(S)) or the information gain (IG(S)) of that attribute. It then selects the
attribute which has the smallest entropy (or largest information gain) value. The set (S) is
then split or partitioned by the selected attribute to produce subsets of the data.

In summary:

1. Take the Entire dataset as an input.

2. Calculate the Entropy of the target variable, As well as the predictor attributes

3. Calculate the information gain of all attributes.

4. Choose the attribute with the highest information gain as the Root Node

5. Repeat the same procedure on every branch until the decision node of each branch
is finalized.

Entropy is a measure of impurity or disorder in a set of examples. In the context of decision
trees, it is used to quantify the uncertainty associated with a given set of data.

((S)=_{x X}-p(x) _2 p(x))

Information gain measures the effectiveness of an attribute in reducing uncertainty
(entropy) about the classification of the data.

Decision Tree Learning 39

(I G(S, A)=(S)-_{t T} p(t) (t)=(S)-(S A))

Classification And Regression Tree Algorithm

The CART (Classification And Regression Tree) algorithm is a decision tree algorithm that
can be used for both classification and regression tasks. It was introduced by Leo Breiman
and his colleagues in 1984. CART is widely used due to its simplicity, effectiveness, and
versatility in handling different types of data. Here’s an overview of how the CART algorithm
works:

Basic Steps of the CART Algorithm:

· Binary Splitting: The CART algorithm builds a binary tree, where each node
represents a binary decision based on the value of a particular attribute. At each node, the
algorithm selects the attribute and a corresponding threshold that best splits the data into
two subsets.

· Objective Function for Splitting: For classification tasks, the Gini impurity is
commonly used as an objective function to measure the impurity of a node. For regression
tasks, the mean squared error (MSE) is used to evaluate the variance of the target variable
within a node.

· Node Splitting: The algorithm evaluates all possible splits for each attribute and
selects the split that minimizes the Gini impurity (for classification) or the mean squared
error (for regression). The selected attribute and threshold are used to create two child
nodes, and the data is divided accordingly.

· Recursion: The process is repeated recursively for each child node until a stopping
criterion is met. This could be a predefined tree depth, a minimum number of samples in a
node, or other criteria.

· Leaf Node Prediction: When a stopping criterion is met, a leaf node is created. For
classification, the majority class in the node is assigned to the leaf. For regression, the
mean or median of the target values in the node is used.

Gini Impurity

Gini impurity is used by the CART (classification and regression tree) algorithm for
classification trees. Gini impurity measures how often a randomly chosen element of a set
would be incorrectly labeled if it were labeled randomly and independently according to
the distribution of labels in the set. It reaches its minimum (zero) when all cases in the
node fall into a single target category.

(G(p)={i=1}^J(p_i {k i} p_k)={i=1}^J p_i(1-p_i)={i=1}J(p_i-p_i2)={i=1}^J p_i-{i=1}^J p_i^2=1-{i=1}^J
p_i^2)

Python Implementation

Decision Tree Learning 40

We will use the following model from sklearn library to predict the price direction for
bitcoin.

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(_*_, criterion=‘gini’, splitter=‘best’, max_depth=
None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_fea
tures=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, cl
ass_weight=None, ccp_alpha=0.0)

The following Python code implements a basic trading strategy using Backtrader, a
financial analysis library. The strategy employs a Decision Tree classifier to make buy and
sell decisions based on historical price data for Bitcoin (BTC-USD). The strategy’s features
include the price difference between close and open, Relative Strength Index (RSI), and
trading volume over a specified lookback period. The Decision Tree model is trained on
these features, and predictions are made to determine whether to buy, sell, or hold. The
strategy uses a simple position sizing approach and executes trades accordingly. The
Backtrader engine is configured to handle the strategy, and the code concludes by printing
the initial and final values of the brokerage account and plotting the strategy’s
performance over the specified historical data period.

import backtrader as bt
from sklearn.tree import DecisionTreeClassifier
import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt

class MLStrategy(bt.Strategy):
 params = (
 ("lookback_period", 30),
 ("decision_tree_model", DecisionTreeClassifier())
)

 def __init__(self):
 self.data_close = self.datas[0].close
 self.data_open = self.datas[0].open
 self.decision_tree_model = self.params.decision_tree_model
 self.lookback_period = self.params.lookback_period
 self.rsi = bt.indicators.RelativeStrengthIndex(self.data_close,
period=14)
 self.volume = self.datas[0].volume
 self.order = None

 def next(self):
 if len(self) > self.lookback_period:
 # Convert array.array to NumPy arrays for subtraction
 close_prices =

Decision Tree Learning 41

np.array(self.data_close.get(size=self.lookback_period))
 open_prices =
np.array(self.data_open.get(size=self.lookback_period))
 price_diff = close_prices - open_prices
 rsi_values = np.array(self.rsi.get(size=self.lookback_period))
 volume_values =
np.array(self.volume.get(size=self.lookback_period))

 # Feature generation
 features = np.column_stack((price_diff, rsi_values,
volume_values))

 # Decision tree input
 X = features.reshape(-1, 3)

 # price directions
 y = np.sign(np.diff(self.data_close.get(size=self.lookback_period
+ 1)))

 # Train the decision tree model
 self.decision_tree_model.fit(X[:-1], y[1:])

 # Predict using decision tree
 prediction = self.decision_tree_model.predict(X[-1:])

 # Check if there is no open position
 if not self.position:
 cash = self.broker.get_cash()
 asset_price = self.data.close[0]
 position_size = cash / asset_price * 0.99

 # Make trading decision based on prediction
 if prediction[-1] == 1:
 self.buy(size=position_size)
 else:
 if prediction[-1] == -1:
 self.close()

 def notify_order(self, order):
 if order.status in [order.Submitted, order.Accepted]:
 return

 # Check if an order has been completed
 if order.status == order.Completed:
 if order.isbuy():
 self.log(f"Buy executed: {order.executed.price:.2f}")
 elif order.issell():
 self.log(f"Sell executed: {order.executed.price:.2f}")

Decision Tree Learning 42

 # Reset order
 self.order = None

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f"{dt.isoformat()}, {txt}")

if __name__ == '__main__':
 # Create a Cerebro engine
 cerebro = bt.Cerebro()

 # Add data
 data = bt.feeds.PandasData(dataname=yf.download('BTC-USD',
 period='3mo',
))

 cerebro.adddata(data)

 # Add the strategy
 cerebro.addstrategy(MLStrategy)

 # Set the initial cash amount
 cerebro.broker.setcash(100.)
 cerebro.broker.setcommission(.001)

 print('<START> Brokerage account: $%.2f' % cerebro.broker.getvalue())
 cerebro.run()
 print('<FINISH> Brokerage account: $%.2f' % cerebro.broker.getvalue())

 # Plot the strategy
 plt.rcParams["figure.figsize"] = (10, 6)
 cerebro.plot()

Decision Trees and EMA Crossover 50% Average Annual Returns 43

Decision Trees and EMA Crossover 50% Average Annual
Returns
I am working on trading strategies that blend traditional technical indicators with machine
learning to generate buy and sell signals. In this article I try mixing a simple EMA crossover
strategy with Decision Trees. First I will explain a bit on the theory of the methods and then
share the Python implementation of the strategy with some backtest results. You can read
this article on my website as well: https://www.aliazary.com/. You will find more articles
and resources as well. You can also subscribe with your email address so that you get my
newsletter and don’t miss out on anything, especially my new backtesting app that I am
working on. You can add your own strategies, modify the strategies and change the
parameters and the asset and dates for backtesting the strategies to find the best
strategies for trading:

Decision Trees and EMA Crossover 50% Average Annual Returns 44

1_2Wv9CPpkmEQFwszVpkcv2g 1.webp

1_2Wv9CPpkmEQFwszVpkcv2g 1.webp

1. Theoretical Foundations

1.1 Exponential Moving Average (EMA)

The Exponential Moving Average (EMA) is a weighted moving average that gives more
importance to recent prices, making it more responsive to new information. The formula is:

[t = P_t + (1 -) {t-1}]

where:

• (P_t) is the current price,

• (=) is the smoothing factor, and

• (n) is the number of periods.

In our strategy, we use two EMAs:

• Short-term EMA with a period of 50.

Decision Trees and EMA Crossover 50% Average Annual Returns 45

• Long-term EMA with a period of 200.

A bullish signal is generated when the short-term EMA crosses above the long-term EMA,
while a bearish signal occurs when it crosses below.

1.2 Relative Strength Index (RSI)

The Relative Strength Index (RSI) is a momentum oscillator that measures the speed and
change of price movements. Its formula is:

[= 100 -]

with

[RS =]

Typically, an RSI above 70 suggests that an asset may be overbought, while an RSI below
30 indicates oversold conditions.

1.3 Moving Average Convergence Divergence (MACD)

The MACD is a trend-following momentum indicator that shows the relationship between
two EMAs of a security’s price. It is calculated as:

[= {} - {}]

Usually, the short-term EMA is taken over 12 periods and the long-term EMA over 26
periods. A signal line, typically a 9-period EMA of the MACD, is also computed. In this
strategy, the MACD histogram (the difference between the MACD line and its signal line) is
used to capture momentum changes.

2. Decision Trees: Theory and Equations

2.1 Introduction to Decision Trees

A Decision Tree is a non-parametric supervised learning method used for both
classification and regression. In classification, the goal is to assign a class label to a given
input by learning decision rules inferred from the features.

2.2 Structure of a Decision Tree

A decision tree is composed of:

• Root Node: Represents the entire dataset.

• Internal Nodes: Each node represents a test on an attribute (feature).

Decision Trees and EMA Crossover 50% Average Annual Returns 46

• Branches: The outcome of the test.

• Leaf Nodes: Represent class labels or outcomes.

2.3 Splitting Criteria

To split the data at each node, decision trees typically use measures of impurity such
as Entropy or the Gini Index.

Entropy

Entropy is a measure of the randomness or impurity in the data. For a binary classification,
the entropy (H) is calculated as:

[H(p) = -p _2(p) - (1-p) _2(1-p)]

where (p) is the proportion of positive examples. A perfectly pure node (all examples of one
class) has an entropy of 0.

Information Gain

Information Gain (IG) is used to measure the effectiveness of a split. It is defined as the
difference between the entropy of the parent node and the weighted average of the
entropies of the child nodes:

[= H() - _{i=1}^{k} H(_i)]

where:

• (N) is the total number of samples in the parent node,

• (N_i) is the number of samples in child (i), and

• (H(_i)) is the entropy of child (i).

Gini Index

The Gini Index is another measure of impurity:

[(p) = 1 - _{i=1}^{C} p_i^2]

where (p_i) is the probability of class (i) in the node. Lower values indicate higher purity.

2.4 Decision Trees in the Trading Strategy

In our strategy, the Decision Tree Classifier is used to predict whether the price will go up
(represented by 1) or not (represented by 0). The steps include:

Decision Trees and EMA Crossover 50% Average Annual Returns 47

1. Feature Extraction:

The classifier uses features derived from technical indicators (e.g., EMA values, RSI,
MACD, signal values) over a defined lookback window.

2. Training:
The decision tree is trained on historical data from the lookback window. The
training involves splitting the data based on the feature values to minimize impurity
(using either entropy or Gini Index).

3. Prediction:
The latest feature vector is passed to the trained decision tree, which predicts the
class label (up or down). This prediction is then used as one of the signals for trade
execution.

4. Model Adaptation:
The model is retrained continuously using a rolling window, ensuring that it adapts
to new market conditions.

3. Strategy Implementation

3.1 Feature Engineering

In this strategy, features are generated from a lookback window (default 30 periods)
including:

• Short-term EMA values (50 periods)

• Long-term EMA values (200 periods)

• RSI values (14 periods)

• MACD values and its signal line

These features are stacked into a matrix (X) for the decision tree to process. The target
variable (y) is defined based on whether the price increased in the lookback window.

3.2 Training and Prediction Process
• Training Data:

The feature matrix (X) is constructed from historical data (all rows except the last)
and aligned with the target variable (y) (shifted by one period to maintain causality).

• Prediction:
The most recent feature vector (last row of (X)) is fed into the decision tree to predict
whether the price will increase.

Decision Trees and EMA Crossover 50% Average Annual Returns 48

3.3 Trade Execution Logic

The strategy combines the machine learning prediction with the EMA crossover condition:

• Entry Signal:
If the decision tree predicts a price increase (1) and the short-term EMA is above the
long-term EMA, a buy order is executed.

• Position Sizing:
The size of the position is calculated based on available cash and the asset price,
with a minor adjustment factor (0.99) for risk management.

• Exit Signal:
If the short-term EMA falls below the long-term EMA, any open positions are closed,
signaling a potential trend reversal.

3.4 Code Walkthrough

Below is a Python implementation of the the strategy for use with backtrader library (or
the BACKTESTER app) that integrates these concepts:

class DecisionTree_EMA_Crossover_Strategy(bt.Strategy):
 params = (("lookback_period", 30),)

 def __init__(self):
 # Data series and lookback window
 self.data_close = self.datas[0].close
 self.window = self.params.lookback_period

 # Decision Tree Classifier initialization
 self.model = DecisionTreeClassifier(random_state=42)

 # Technical indicators initialization
 self.emas = bt.indicators.ExponentialMovingAverage(self.data_close,
period=50)
 self.emal = bt.indicators.ExponentialMovingAverage(self.data_close,
period=200)
 self.rsi = bt.indicators.RelativeStrengthIndex(self.data_close,
period=14)
 self.macd = bt.indicators.MACDHisto(self.data_close,
 period_me1=12,
 period_me2=26,
 period_signal=9)
 self.order = None # Track pending orders

 def next(self):
 # Ensure sufficient data is available for the lookback period
 if len(self) > self.window:

Decision Trees and EMA Crossover 50% Average Annual Returns 49

 # Extract indicator values over the lookback window
 emas_values = np.array(self.emas.get(size=self.window))
 emal_values = np.array(self.emal.get(size=self.window))
 rsi_values = np.array(self.rsi.get(size=self.window))
 macd_values = np.array(self.macd.macd.get(size=self.window))
 signal_values = np.array(self.macd.signal.get(size=self.window))

 # Construct feature matrix X
 X = np.column_stack((emas_values, emal_values, rsi_values,
macd_values, signal_values))

 # Define target variable: 1 if price increased, 0 otherwise
 prices = np.array(self.data_close.get(size=self.window + 1))
 y = np.where(np.diff(prices) > 0, 1, 0)

 # Prepare training and testing data
 X_train = X[:-1]
 y_train = y[1:] # Shift target by one period to align with
features
 X_test = X[-1]

 # Train the decision tree on historical lookback data
 self.model.fit(X_train, y_train)

 # Predict the next move using the most recent features
 prediction = self.model.predict(X_test.reshape(1, -1))

 # Trade execution: enter position if conditions are met
 if not self.position:
 cash = self.broker.get_cash()
 asset_price = self.data_close[0]
 position_size = cash / asset_price * 0.99

 # Buy if prediction is 1 and the EMA crossover is bullish
 if prediction[0] == 1 and self.emas[0] > self.emal[0]:
 self.buy(size=position_size)
 self.log(f"Buy order placed at price: {asset_price:.2f}")
 else:
 # Close position if the EMA crossover indicates a bearish
trend
 if self.emas[0] < self.emal[0]:
 self.close()
 self.log(f"Position closed at price:
{self.data_close[0]:.2f}")

 def notify_order(self, order):
 if order.status in [order.Submitted, order.Accepted]:
 return

Decision Trees and EMA Crossover 50% Average Annual Returns 50

 # Log order execution details
 if order.status == order.Completed:
 if order.isbuy():
 self.log(f"Buy executed: {order.executed.price:.2f}")
 elif order.issell():
 self.log(f"Sell executed: {order.executed.price:.2f}")
 elif order.status in [order.Canceled, order.Margin, order.Rejected]:
 self.log("Order canceled/margin/rejected")
 self.order = None

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f"{dt.isoformat()}, {txt}")

5. Backtests
let’s see the backtest results for trading Bitcoin for 5 consecutive years from 2020 to 2025.
Since the strategy only takes long positions, it won’t make money in bearish markets.
However, we can easily add short positions using opposite conditions so that we can make
money in any market regime. If you are trading using a margin or futures account you can
take short positions as well:

Decision Trees and EMA Crossover 50% Average Annual Returns 51

1_2Wv9CPpkmEQFwszVpkcv2g.webp

1_2Wv9CPpkmEQFwszVpkcv2g.webp

Decision Trees and EMA Crossover 50% Average Annual Returns 52

1_ZhRVxa7aCOYNzouXc3pBCQ.webp

1_ZhRVxa7aCOYNzouXc3pBCQ.webp

Decision Trees and EMA Crossover 50% Average Annual Returns 53

1_IrSuMTr6fSl9BAbzhcbJNQ.webp

1_IrSuMTr6fSl9BAbzhcbJNQ.webp

Decision Trees and EMA Crossover 50% Average Annual Returns 54

1_NsD8a7tzNxEnXahla5Nakg.webp

1_NsD8a7tzNxEnXahla5Nakg.webp

Decision Trees and EMA Crossover 50% Average Annual Returns 55

1_kQHBhBLCMohnNUWJrBUXbQ.webp

1_kQHBhBLCMohnNUWJrBUXbQ.webp

Overall the results seem promising. In the ranging market of 2021 we lost about 20%,
which can be easily avoided with a stop-loss. The best case was the bullish market of 2020
where we made more than 200%. For a long-only strategy its performance is not so bad
even for ranging or bearish markets. If we implement short selling and also put in place
stop-loss conditions or any other risk management strategy, it has great potential as a
consistently profitable strategy. In the end, please make sure to backtest it thoroughly for
different periods and different assets to make sure its performance is what you expect.
Also please make sure to go over the code carefully so that there are no mistakes. Always
be careful, and try with a small account for real trading, so you make sure the real-life
performance is good enough and you don’t risk losing your money.

5. Conclusion
The DecisionTree_EMA_Crossover_Strategy represents a hybrid approach that integrates
machine learning with traditional technical analysis. By employing technical indicators
such as EMA, RSI, and MACD, the strategy gathers rich features that are fed into a decision
tree classifier. The decision tree uses well-established splitting criteria—grounded in
entropy, information gain, or the Gini Index—to predict future price movements. Coupled

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 56

with the EMA crossover condition, this strategy aims to enhance trade execution by
confirming machine-generated signals with trend-based indicators. As I mentioned before,
you can make it even better adding short selling and implementing a simple risk
management strategy like a stop-loss and end up with a very profitable trading bot that
makes you money consistently.

This comprehensive overview provides both the theoretical background and the practical
implementation details, offering a robust framework for adapting machine learning to
dynamic trading environments. I hope you find it useful and I would also appreciate your
ideas and comments if you have any.

Forecasting Bitcoin Autocorrelation with 74% Directional
Accuracy using LSTMs
Financial time series, like Bitcoin prices, are notoriously complex and volatile. While
directly predicting price is challenging, analyzing and predicting underlying statistical
properties can offer valuable insights. This article walks through a Python implementation
that builds, trains, and evaluates a Long Short-Term Memory (LSTM) neural network to
forecast the rolling autocorrelation of Bitcoin’s closing price. Autocorrelation measures
the persistence of trends, and predicting it could potentially inform trading strategies or
market analysis.

We’ll cover fetching data, calculating the target feature, preparing data for the LSTM,
building and training the model with regularization, and finally evaluating its predictive
performance.

1. Setting the Stage: Imports and Parameters

First, we import the necessary libraries: numpy and pandas for data
manipulation, yfinance to fetch market data, matplotlib for plotting, sklearn for
evaluation metrics and scaling (optional), math for calculations, and tensorflow.keras for
building the LSTM model.

Python

import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from math import sqrt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, BatchNormalization

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 57

from tensorflow.keras.callbacks import EarlyStopping
import datetime

We then define key parameters for data fetching, feature calculation, and the LSTM model:

Python

Data and Feature Parameters
ticker = 'BTC-USD'
start_date = '2023-01-01'
end_date = datetime.datetime.now().strftime('%Y-%m-%d')
rolling_window = 30 # Window for calculating autocorrelation
lag = 1 # Lag for autocorrelation (day-over-day)

Model Hyperparameters
num_lags = 90 # How many past autocorrelation values to use as input
train_test_split = 0.80 # 80% for training, 20% for testing
num_neurons_in_hidden_layers = 128 # LSTM layer size
num_epochs = 100 # Max training epochs
batch_size = 20 # Samples per gradient update
dropout_rate = 0.1 # Regularization rate

2. Data Acquisition and Feature Engineering

We use yfinance to download historical Bitcoin price data.

Python

print(f"Fetching {ticker} data from {start_date} to {end_date}...")
data = yf.download(ticker, start=start_date, end=end_date)
Clean up potential multi-level columns from yfinance
if isinstance(data.columns, pd.MultiIndex):
 data.columns = data.columns.droplevel(1)
data = data['Close'] # We only need closing prices
data = data.dropna()
print(f"Data fetched successfully. Shape: {data.shape}")

The core feature we want to predict is the rolling autocorrelation. This measures how
correlated the price change on one day is with the price change on the previous day,
calculated over the specified rolling_window.

Python

print(f"Calculating {rolling_window}-day rolling autocorrelation
(lag={lag})...")
rolling_autocorr_series = data.rolling(
 window=rolling_window
).apply(lambda x: x.autocorr(lag=lag), raw=False) # Use pandas Series method

rolling_autocorr = rolling_autocorr_series.dropna().values # Drop initial

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 58

NaNs
rolling_autocorr = np.reshape(rolling_autocorr, (-1)) # Ensure 1D shape
print(f"Rolling autocorrelation calculated. Shape: {rolling_autocorr.shape}")

Note: We use raw=False to ensure the apply function receives a pandas Series, which has
the .autocorr() method.

3. Preparing Data for the LSTM

LSTMs require input data in a specific format: sequences of past observations (features)
paired with the next observation (target). We define a helper
function data_preprocessing for this:

Python

def data_preprocessing(data_series, n_lags, train_split_ratio):
 """
 Prepares time series data into lags for supervised learning and splits.
 """
 X, y = [], []
 # Create sequences: Use 'n_lags' points to predict the next point
 for i in range(n_lags, len(data_series)):
 X.append(data_series[i-n_lags:i])
 y.append(data_series[i])
 X, y = np.array(X), np.array(y)

 # Split into training and testing sets
 split_index = int(len(X) * train_split_ratio)
 x_train = X[:split_index]
 y_train = y[:split_index]
 x_test = X[split_index:]
 y_test = y[split_index:]

 print(f"Data shapes: X_train={x_train.shape}, y_train={y_train.shape},
X_test={x_test.shape}, y_test={y_test.shape}")
 return x_train, y_train, x_test, y_test

Create the datasets
x_train, y_train, x_test, y_test = data_preprocessing(
 rolling_autocorr, num_lags, train_test_split
)

This function iterates through the autocorrelation series, creating input sequences (X) of
length num_lags and corresponding target values (y). It then splits these into training and
testing sets.

LSTMs expect a 3D input shape: (samples, timesteps, features).
Our timesteps dimension is num_lags, and we have 1 feature (the autocorrelation value).

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 59

Python

Reshape Input for LSTM [samples, time steps, features]
x_train = x_train.reshape((-1, num_lags, 1))
x_test = x_test.reshape((-1, num_lags, 1))
print(f"Data reshaped for LSTM: x_train={x_train.shape},
x_test={x_test.shape}")

4. Building the LSTM Model with Regularization

We use Keras’ Sequential API to define the model architecture. Key components include:

• LSTM layer: The core recurrent layer that learns temporal dependencies.
• BatchNormalization: Normalizes activations between layers, often leading to

faster and more stable training.
• Dropout: Randomly sets a fraction (dropout_rate) of input units to 0 during training,

helping prevent overfitting.
• Dense layer: A standard fully connected layer with one output neuron for our single

predicted value.

Python

print("Building LSTM model...")
model = Sequential()
model.add(LSTM(units=num_neurons_in_hidden_layers, input_shape=(num_lags,
1)))
model.add(BatchNormalization()) # Regularization / Stability
model.add(Dropout(dropout_rate)) # Regularization
model.add(Dense(units=1)) # Output layer

Compile: Define loss function and optimizer
model.compile(loss='mean_squared_error', optimizer='adam')
model.summary() # Display model structure

5. Training the Model with Early Stopping

To prevent overfitting and avoid unnecessary training time, we use EarlyStopping. This
callback monitors a specified metric (here, the training loss) and stops training if it doesn’t
improve for a set number of epochs (patience). restore_best_weights=True ensures the
model weights from the best epoch are kept.

Python

Early stopping implementation
early_stopping = EarlyStopping(monitor='loss', patience=15,
 restore_best_weights=True, verbose=1)

print("Training model...")
history = model.fit(x_train, y_train,

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 60

 epochs=num_epochs,
 batch_size=batch_size,
 callbacks=[early_stopping],
 verbose=1,
 shuffle=False) # Keep temporal order if needed

print("Training finished.")
if early_stopping.stopped_epoch > 0:
 print(f"Early stopping triggered at epoch {early_stopping.stopped_epoch +
1}")

Note: Using shuffle=False is often recommended for time series to maintain temporal
sequence, although its impact might be less critical when using long input sequences
(num_lags).

6. Prediction and Evaluation

With the model trained, we generate predictions on both the training data (in-sample) and
the unseen test data (out-of-sample).

Python

print("Predicting...")
y_predicted_train = model.predict(x_train).flatten()
y_predicted_test = model.predict(x_test).flatten()

Prepare actual values (flatten)
y_train_flat = y_train.flatten()
y_test_flat = y_test.flatten()

We evaluate performance using several metrics:

• RMSE (Root Mean Squared Error): Measures the average magnitude of prediction
errors. Lower is better.

• Correlation: Measures how well the predicted values track the actual values
(ranging from -1 to +1). Higher (closer to 1) is better.

• Directional Accuracy: Measures the percentage of times the model correctly
predicted whether the autocorrelation would increase or decrease compared to the
previous day. Higher is better (> 50% suggests predictive ability).

Python

print("Evaluating performance...")
Calculate Metrics
rmse_train = sqrt(mean_squared_error(y_train_flat, y_predicted_train))
rmse_test = sqrt(mean_squared_error(y_test_flat, y_predicted_test))

(Assuming calculate_directional_accuracy function is defined as above)
accuracy_train = calculate_directional_accuracy(y_train_flat,

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 61

y_predicted_train)
accuracy_test = calculate_directional_accuracy(y_test_flat, y_predicted_test)

min_len_train = min(len(y_train_flat), len(y_predicted_train))
min_len_test = min(len(y_test_flat), len(y_predicted_test))
correlation_train = np.corrcoef(y_train_flat[:min_len_train],
y_predicted_train[:min_len_train])[0, 1]
correlation_test = np.corrcoef(y_test_flat[:min_len_test],
y_predicted_test[:min_len_test])[0, 1]

Print Results
print("\n--- Results ---")
... (print statements for metrics) ...
print("---------------\n")

Comparing the test metrics to the train metrics is crucial. If test performance is
significantly worse, it indicates overfitting. Similar performance suggests the model
generalizes well.

6. Analysis of Results

The evaluation metrics provide quantitative insights into the model’s performance:

--- Results ---
Directional Accuracy Train = 72.96 %
Directional Accuracy Test = 73.61 %
RMSE Train = 0.10346005
RMSE Test = 0.07769025
Correlation In-Sample Predicted/Train = 0.971
Correlation Out-of-Sample Predicted/Test = 0.967

Let’s break down what these numbers tell us:

• Correlation (Train: 0.971, Test: 0.967): These are exceptionally high correlation
coefficients, very close to 1.0. This indicates that the model’s predictions track the
actual movements (ups and downs, general shape) of the rolling autocorrelation
extremely well, both on the data it was trained on and, more importantly, on the
unseen test data. The minimal drop between train and test correlation signifies
excellent generalization.

• RMSE (Train: 0.103, Test: 0.078): The Root Mean Squared Error measures the
typical magnitude of the prediction error. Given that autocorrelation ranges from -1
to +1, these RMSE values are relatively low. Crucially, the Test RMSE is
significantly lower than the Train RMSE. This is a strong positive sign, suggesting
that the regularization techniques (Batch Normalization, Dropout, and especially
Early Stopping) were highly effective in preventing overfitting. The model performs
even better on unseen data according to this metric.

Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs 62

• Directional Accuracy (Train: 72.96%, Test: 73.61%): Both values are well above

50%, indicating the model is considerably better than random chance at predicting
whether the autocorrelation will increase or decrease in the next time step. Similar
to RMSE, the test accuracy is slightly higher than the train accuracy, further
reinforcing the conclusion that the model generalizes well.

Synthesis: Overall, these metrics paint a very positive picture. The LSTM model learned to
predict the one-step-ahead 30-day rolling autocorrelation with high fidelity (high
correlation), relatively low error magnitude (low RMSE), and good directional correctness.
Most importantly, the model demonstrates excellent generalization to unseen test data,
avoiding the common pitfall of overfitting.

7. Visualizing the Forecast

While metrics provide quantitative scores, a visual inspection helps confirm the model’s
behavior.

Python

print("Plotting results...")
(Assuming plot_train_test_values function is defined as above)
plot_train_test_values(n_train_plot=300, n_test_plot=len(y_test_flat),
 y_train=y_train_flat,
 y_test=y_test_flat,
 y_predicted=y_predicted_test)

Plot Interpretation:

The plot visually confirms the strong performance indicated by the metrics.

Market Regime Detection using Hidden Markov Models 63

• The red dashed line (Predicted Test values) closely follows the overall pattern and

major fluctuations of the green line (Actual Test values).
• This visual alignment corroborates the high correlation score (0.967).
• While the prediction captures the general trend and turning points well, it doesn’t

perfectly match every peak and trough, which is expected and reflected in the non-
zero RMSE (0.078). The predictions appear slightly smoother in some sections
compared to the actual data.

This visual confirmation reinforces our confidence that the model has successfully learned
the underlying short-term dynamics of the rolling autocorrelation series in this dataset.

Conclusion

This article demonstrated the complete workflow for building, training, and evaluating an
LSTM model to forecast the rolling autocorrelation of Bitcoin prices. Key steps included
fetching data, calculating the autocorrelation feature, preparing sequences for the LSTM,
defining a regularized model architecture, training with early stopping, and evaluating
using relevant metrics like RMSE, correlation, and directional accuracy.

While this model predicts a statistical feature rather than price directly, understanding and
forecasting market persistence through autocorrelation could be a valuable component in
developing more sophisticated trading algorithms or market analysis tools. Further work
could involve hyperparameter tuning, exploring different model architectures, or
integrating these predictions into a full backtesting framework like backtrader.

Market Regime Detection using Hidden Markov Models
This article explores a Python script that leverages Hidden Markov Models (HMMs) to
identify distinct market regimes (specifically strong bull and strong bear phases) within
financial time series data. It then utilizes the backtrader library to visualize these regime
shifts on a price chart.

Core Concepts:

1. Hidden Markov Models (HMMs): HMMs are statistical models assuming a system
transitions through a sequence of unobservable (“hidden”) states. Each state has a
probability distribution governing the observable outputs (or features). In finance,
we can think of market regimes (bull, bear, ranging) as hidden states, and price
movements (like returns and volatility) as observable features.

2. Backtrader: A popular Python framework for backtesting trading strategies and
creating financial visualizations. It handles data loading, indicator calculations,
strategy logic, and plotting.

3. Market Regimes: Distinct periods in the market characterized by different price
behavior (e.g., strong upward trend, sharp downward trend, low-volatility sideways

Market Regime Detection using Hidden Markov Models 64

movement). Identifying the current regime can be crucial for adjusting trading
strategies.

Prerequisites:

You’ll need the following Python libraries installed:

Bash

pip install backtrader yfinance numpy pandas hmmlearn matplotlib

Code Breakdown

Let’s dissect the provided script section by section.

1. Imports:

Python

import backtrader as bt
import yfinance as yf
import numpy as np
import pandas as pd
import warnings
from hmmlearn import hmm
import matplotlib.pyplot as plt
Optional: Configure matplotlib backend if needed
%matplotlib qt5

warnings.filterwarnings("ignore") # Suppress common warnings

• backtrader (bt): The core backtesting and plotting engine.
• yfinance (yf): Used to download historical stock/crypto data from Yahoo

Finance.
• numpy (np): For numerical operations, especially array manipulations.
• pandas (pd): For data manipulation using DataFrames.
• warnings: To control how warnings are handled (here, they are suppressed).
• hmmlearn.hmm: Provides the GaussianHMM class for implementing Hidden Markov

Models with Gaussian emissions.
• matplotlib.pyplot (plt): Used by backtrader (and potentially directly) for

plotting.

2. HMM Training and State Identification (train_hmm_and_identify_states):

This is the heart of the regime detection logic.

Market Regime Detection using Hidden Markov Models 65

Python

--- MODIFICATIONS ONLY WITHIN THIS FUNCTION ---
def train_hmm_and_identify_states(df, n_states=5, n_iter=500, tol=1e-4,
vol_window=20):
 """
 Train an HMM on [Log Return, Volatility of Log Return], label each bar
with its state,
 and identify strong/weak bull & bear plus ranging regimes based on mean
log return.
 # ... (docstring continues) ...
 """
 df_hmm = df.copy() # Work on a copy to avoid modifying the original
DataFrame

 # --- Feature Calculation using Log Returns ---
 # Log returns are often preferred in finance as they are additive over
time
 # and approximate percentage changes for small values.
 df_hmm['Log Return'] = np.log(df_hmm['Close'] / df_hmm['Close'].shift(1))
 df_hmm['Log Return'].fillna(0, inplace=True) # Handle the first NaN value

 # Calculate rolling standard deviation of log returns as a measure of
volatility
 df_hmm['Volatility'] = df_hmm['Log Return'].rolling(vol_window).std()
 df_hmm['Volatility'].fillna(0, inplace=True) # Handle initial NaNs from
rolling window

 # --- Select features for HMM ---
 # The HMM will learn hidden states based on these observable features.
 # More features could potentially improve state differentiation.
 X = df_hmm[['Log Return', 'Volatility']].values

 # Handle potential numerical issues before fitting
 if np.any(np.isnan(X)) or np.any(np.isinf(X)):
 print("Warning: NaNs or Infs detected in HMM features. Replacing with
0.")
 X = np.nan_to_num(X, nan=0.0, posinf=0.0, neginf=0.0)

 # --- HMM Training ---
 # GaussianHMM assumes the features within each hidden state follow a
Gaussian distribution.
 # 'n_components': The number of hidden states to find (a key tuning
parameter).
 # 'covariance_type="diag"': Assumes features are independent within a
state (simpler, less prone to overfitting).
 # 'n_iter', 'tol': Control the convergence of the training algorithm.
 model = hmm.GaussianHMM(
 n_components=n_states,

Market Regime Detection using Hidden Markov Models 66

 covariance_type='diag',
 n_iter=n_iter,
 tol=tol,
 random_state=42, # For reproducibility
 verbose=False
)

 print(f"\nFitting HMM with {n_states} states...")
 try:
 # Fit the HMM model to the feature data (X)
 with warnings.catch_warnings(): # Suppress specific warnings during
fitting
 warnings.filterwarnings("ignore", category=DeprecationWarning)
 warnings.filterwarnings("ignore", category=RuntimeWarning)
 model.fit(X)
 except ValueError as e:
 print(f"Error fitting HMM: {e}")
 print("Check input data X for issues.")
 raise e

 if not model.monitor_.converged:
 print(f"Warning: HMM did not converge after {n_iter} iterations.")

 # Predict the most likely hidden state for each data point
 states = model.predict(X)
 df_hmm['HMM_State'] = states # Add the predicted states back to the
DataFrame

 # --- State Interpretation ---
 # Analyze the characteristics of each predicted state
 stats = []
 for i in range(n_states):
 mask = (states == i)
 if mask.sum() == 0: # Check if a state was even predicted
 print(f"Warning: State {i} was not predicted for any data
point.")
 continue
 # Calculate average log return and volatility for data points
belonging to this state
 stats.append({
 'State': i,
 'Mean Log Return': df_hmm.loc[mask, 'Log Return'].mean(),
 'Mean Volatility': df_hmm.loc[mask, 'Volatility'].mean(),
 'Count': mask.sum() # How many data points belong to this state
 })

 if not stats:
 raise ValueError("HMM training resulted in no predictable states.")

Market Regime Detection using Hidden Markov Models 67

 # Sort states by their average log return (descending)
 # Assumption: Highest mean return = Strong Bull, Lowest mean return =
Strong Bear
 stats_df = pd.DataFrame(stats).sort_values('Mean Log Return',
ascending=False).reset_index(drop=True)

 print("\nHMM State Summary (sorted by Mean Log Return):")
 print(stats_df.to_string(index=False, float_format='{:.6f}'.format))

 # Assign regimes based on sorted order (assuming 5 states initially)
 state_indices = stats_df['State'].tolist()
 s_bull_strong = -1 # Initialize with invalid index
 s_bear_strong = -1

 # Adjust assignment based on how many distinct states were actually found
 if len(state_indices) > 0:
 s_bull_strong = state_indices[0] # State with highest mean log
return
 s_bear_strong = state_indices[-1] # State with lowest mean log
return
 # (The code handles cases with < 5 states by only assigning strong
bull/bear)

 print(f"\nRegime mapping (based on Mean Log Return sort):")
 print(f" Strong Bull State = {s_bull_strong} (Highest Mean Log Return)")
 print(f" Strong Bear State = {s_bear_strong} (Lowest Mean Log Return)")

 # Basic check for valid state assignment
 if s_bull_strong < 0 or s_bear_strong < 0:
 print("\nError: Could not reliably assign Strong Bull or Strong
Bear state index.")
 # The indicator initialization will later catch these invalid
indices

 print("\nReturning states for Strong Bull and Strong Bear signals.")
 # Return the DataFrame with HMM states and the identified indices for
strong bull/bear
 return df_hmm, s_bull_strong, s_bear_strong
--- END OF MODIFICATIONS ---

• Feature Engineering: Calculates log returns and rolling volatility of log returns.
These serve as the observable inputs for the HMM.

• HMM Instantiation: Creates a GaussianHMM model. n_states=5 is a crucial
parameter – it dictates how many distinct market patterns the model should try to
find.

Market Regime Detection using Hidden Markov Models 68

• Training: The model.fit(X) method trains the HMM using the Expectation-

Maximization algorithm to find the parameters (transition probabilities between
states, emission probabilities for each state) that best explain the observed feature
data (X).

• State Prediction: model.predict(X) determines the most likely hidden state for
each time step based on the trained model and the observed features.

• State Interpretation: After training, the script analyzes the average log return and
volatility associated with each identified state. It sorts the states based on mean log
return, assuming the state with the highest mean return corresponds to a “Strong
Bull” regime and the state with the lowest mean return corresponds to a “Strong
Bear” regime.

• Return Values: The function returns the original DataFrame augmented with
the HMM_State column, and the integer indices corresponding to the identified
strong bull and strong bear states.

3. Custom Backtrader Data Feed (HMMData):

Python

class HMMData(bt.feeds.PandasData):
 """Custom PandasData that carries the HMM_State column through as
`hmm_state`."""
 lines = ('hmm_state',) # Declare the new data line
 params = (
 # Map standard OHLCV columns
 ('datetime', None), # Use index for datetime
 ('open', 'Open'),
 ('high', 'High'),
 ('low', 'Low'),
 ('close', 'Close'),
 ('volume', 'Volume'),
 ('openinterest', None), # Not used here
 # Map our custom column 'HMM_State' from the DataFrame to the
'hmm_state' line
 ('hmm_state', 'HMM_State'),
)

• This class inherits from bt.feeds.PandasData.
• It tells backtrader how to read the Pandas DataFrame prepared earlier.
• Crucially, it adds a custom data line hmm_state and maps it to

the HMM_State column created by the HMM function. This makes the HMM state
available within backtrader strategies and indicators.

4. Custom Backtrader Indicator (HMMRegimeStartSignal):

Python

Market Regime Detection using Hidden Markov Models 69

class HMMRegimeStartSignal(bt.Indicator):
 """
 Signals the first bar of each new strong bull or strong bear regime
 by comparing the current HMM state to the prior bar.
 """
 lines = ('bull_start', 'bear_start',) # Output lines for signals
 params = (
 ('bull_state_idx', None), # Parameter to receive the strong bull
state index
 ('bear_state_idx', None), # Parameter to receive the strong bear
state index
)
 plotinfo = dict(subplot=False) # Plot directly on the price chart
 plotlines = dict(
 # Define how the signals should be plotted (green up triangles, red
down triangles)
 bull_start=dict(marker='^', markersize=8, color='green',
linestyle='None'),
 bear_start=dict(marker='v', markersize=8, color='red',
linestyle='None'),
)

 def __init__(self):
 # Validate that valid state indices were passed from the main script
 if self.p.bull_state_idx is None or self.p.bear_state_idx is None or
\
 self.p.bull_state_idx < 0 or self.p.bear_state_idx < 0:
 raise ValueError("Must pass valid non-negative bull_state_idx and
bear_state_idx to HMMRegimeStartSignal")
 # Access the custom hmm_state line from the data feed
 self.hmm_state = self.data.hmm_state

 def next(self):
 # Called for each bar of data (once enough data is available)
 if len(self.data) < 2: # Need at least two bars to compare current
and previous state
 return

 # Default signal values to NaN (no signal)
 self.lines.bull_start[0] = float('nan')
 self.lines.bear_start[0] = float('nan')

 # Get current and previous HMM state
 curr = int(self.data.hmm_state[0])
 prev = int(self.data.hmm_state[-1])
 b = self.p.bull_state_idx # Convenience alias for bull state index
 r = self.p.bear_state_idx # Convenience alias for bear state index
(renamed from 'r' for clarity)

Market Regime Detection using Hidden Markov Models 70

 # --- Signal Logic ---
 # Strong bull entry: Current state is strong bull, previous was not.
 if curr == b and prev != b:
 # Place a green marker slightly below the low of the current bar
 self.lines.bull_start[0] = self.data.low[0] * 0.99

 # Exit strong bull: Previous state was strong bull, current is not.
 # This is treated as a potential sell/bearish signal.
 elif prev == b and curr != b:
 # Place a red marker slightly above the high of the current bar
 self.lines.bear_start[0] = self.data.high[0] * 1.01

 # Strong bear entry: Current state is strong bear, previous was not.
 elif curr == r and prev != r:
 # Place a red marker slightly above the high of the current bar
 self.lines.bear_start[0] = self.data.high[0] * 1.01

• This class inherits from bt.Indicator.
• It takes the identified bull_state_idx and bear_state_idx as parameters.
• The __init__ method validates these parameters and gets access to

the hmm_state data line.
• The next method contains the core logic:

o It compares the hmm_state of the current bar ([0]) with the hmm_state of
the previous bar ([-1]).

o It generates a bull_start signal (plots a green marker) only on the first bar
where the state transitions into the bull_state_idx.

o It generates a bear_start signal (plots a red marker) on the first bar where
the state transitions into the bear_state_idx OR when the state
transitions out of the bull_state_idx. This treats both entering a bear state
and exiting a bull state as potentially bearish signals for visualization.

• The plotinfo and plotlines dictionaries configure how these signals appear on
the chart.

5. Main Execution Block (if __name__ == '__main__':)

Python

if __name__ == '__main__':
 ticker, start, end = 'BTC-USD', '2022-01-01', '2023-12-31'

 print(f"\nDownloading {ticker} data from {start} to {end}...")
 df = yf.download(ticker, start=start, end=end, progress=False)
 if df.empty:
 raise ValueError(f"No data downloaded for {ticker}.")

 # Optional: Flatten MultiIndex columns if yfinance returns them

Market Regime Detection using Hidden Markov Models 71

 if isinstance(df.columns, pd.MultiIndex):
 df.columns = df.columns.droplevel(1)

 # --- Run HMM ---
 # Call the function to train HMM and get the state-augmented data +
regime indices
 data_with_hmm, bull_state, bear_state = train_hmm_and_identify_states(df)

 # --- Backtrader Setup ---
 cerebro = bt.Cerebro(stdstats=False) # Create the main backtrader engine
instance

 # --- Add Data ---
 # Ensure DataFrame index is DatetimeIndex (usually true for yfinance)
 if not isinstance(data_with_hmm.index, pd.DatetimeIndex):
 data_with_hmm.index = pd.to_datetime(data_with_hmm.index)
 # Create the custom data feed using the HMM-augmented DataFrame
 data_feed = HMMData(dataname=data_with_hmm)
 cerebro.adddata(data_feed) # Add the data feed to Cerebro

 # --- Add Indicators ---
 # Add the custom HMM signal indicator, passing the identified state
indices
 cerebro.addindicator(HMMRegimeStartSignal,
 bull_state_idx=bull_state,
 bear_state_idx=bear_state)
 # Add standard Moving Average indicators for context
 cerebro.addindicator(bt.indicators.SimpleMovingAverage, period=30)
 cerebro.addindicator(bt.indicators.SimpleMovingAverage, period=90)

 # --- Run and Plot ---
 print("\n--- Running Cerebro (for plotting) ---")
 cerebro.run() # Run the engine (calculates indicators)

 # Configure plot appearance
 plt.rcParams['figure.figsize'] = (10, 6)
 plt.rcParams['figure.dpi'] = 100
 print("\n--- Generating Plot ---")
 # Generate the plot: includes price, volume, SMAs, and HMM signals
 cerebro.plot(style='line', volume=True, iplot=False) # iplot=False for
static plot

• Data Download: Fetches historical data for BTC-USD using yfinance.
• HMM Training: Calls the train_hmm_and_identify_states function.
• Cerebro Initialization: Creates a backtrader Cerebro engine.
• Data Addition: Adds the data (including HMM states) to Cerebro using the

custom HMMData feed.

Market Regime Detection using Hidden Markov Models 72

• Indicator Addition: Adds the custom HMMRegimeStartSignal indicator (providing it

with the bull_state and bear_state indices) and two standard Simple Moving
Averages (SMAs) for visual context.

• Execution: cerebro.run() processes the data and calculates the indicator values.
Note that no trading strategy is added here; Cerebro is used primarily for its
indicator calculation and plotting capabilities in this script.

• Plotting: cerebro.plot() generates the final chart, displaying the price, volume,
SMAs, and the HMM regime start signals (green and red markers).

 ### How
it Works - Summary

1. Download historical price data (e.g., BTC-USD).
2. Calculate features relevant to market behavior (log returns, volatility).
3. Train a Gaussian Hidden Markov Model on these features to identify a predefined

number of hidden market states (n_states).
4. Analyze the characteristics (mean return, mean volatility) of each state found by the

HMM.
5. Designate the state with the highest average return as the “Strong Bull” regime and

the state with the lowest average return as the “Strong Bear” regime.
6. Feed the price data and the corresponding predicted HMM state for each bar

into backtrader using a custom data feed.
7. Use a custom backtrader indicator to detect when the market transitions into the

strong bull state (plot green marker) or transitions into the strong bear state / out
of the strong bull state (plot red marker).

Neural Networks with Kalman Filter for Trading 73

8. Display the price chart with standard indicators (like SMAs) and the HMM regime

transition markers overlaid.

This script provides a powerful way to visualize potential market regime shifts identified by
an HMM, which could be a valuable input for discretionary trading or the development of
regime-aware automated strategies.

Neural Networks with Kalman Filter for Trading
In quantitative finance, combining statistical filtering techniques with machine learning
can provide robust insights into market dynamics. In this article, we explore two powerful
tools—Neural Networks and the Kalman Filter—and show how they can be used together
to predict the direction of asset price movements. We then outline a trading strategy that
uses these predictions, backtests its performance, and compares it to a simple buy-and-
hold approach.

1. Theoretical Background

1.1 Neural Networks

Neural networks are a class of machine learning models inspired by biological neural
structures. They consist of layers of interconnected nodes (neurons) that transform inputs
into outputs through a series of linear and nonlinear operations.

Feed-Forward Neural Network Model

A basic multilayer perceptron (MLP) can be mathematically described as follows:

1. Input Layer:
The network receives an input vector: [= [x_1, x_2, , x_n]^T]

2. Hidden Layers:
Each hidden layer performs a linear transformation followed by a nonlinear
activation function (e.g., ReLU or sigmoid). For layer (l): [^{(l)} = (^{(l)} ^{(l-1)} + ^{(l)}
)]

 where:

o (^{(l)}) is the weight matrix.
o (^{(l)}) is the bias vector.
o () is an activation function.
o For (l = 1), (^{(0)} =).

3. Output Layer:
The final layer computes the output: [= (^{(L)} ^{(L-1)} + ^{(L)})]

Neural Networks with Kalman Filter for Trading 74

 The softmax function is often used for classification tasks to convert raw scores into

probabilities.

4. Training via Backpropagation:
The network parameters ({^{(l)}, ^{(l)}}) are optimized by minimizing a loss
function (L(,)) (e.g., cross-entropy for classification) using gradient descent: [-]

 where () represents all the parameters and () is the learning rate.

In our code, we use Python’s MLPClassifier from scikit-learn, which implements a
multilayer perceptron with hidden layers (in our case, with sizes 32 and 16 neurons) to
predict the direction of asset price movements.

1.2 Kalman Filter

The Kalman filter is a recursive algorithm used for estimating the state of a dynamic system
from noisy observations. It is especially useful in financial applications where price signals
are noisy.

Kalman Filter Equations

The filter works in two main steps: prediction and update.

1. Prediction Step:

o State Prediction: [{k|k-1} = {k-1|k-1}]
o Error Covariance Prediction: [{k|k-1} = {k-1|k-1} ^T +]

 Here, () is the state transition model, and () is the process noise covariance.

2. Update Step:

o Kalman Gain: [k = {k|k-1} ^T (_{k|k-1} ^T +)^{-1}]
o State Update: [{k|k} = {k|k-1} + _k (k - {k|k-1})]
o Error Covariance Update: [_{k|k} = (- k) {k|k-1}]

 In these equations, () is the observation model, () is the measurement noise
covariance, and (_k) is the measurement at time (k).

In our code, we use a custom KalmanFilter class to smooth the price series. The filter
produces two outputs: a smoothed price and an estimated rate of change, which serve
as features for the neural network.

Neural Networks with Kalman Filter for Trading 75

2. The Trading Strategy
The core idea is to predict the price direction for the next week (7 days) using the neural
network. The target is defined as:

[=

]

Trading Signal Generation
• Long Position (+1):

If the model predicts a 1, the strategy goes long by buying at the current close and
selling 7 days later.

• Short Position (-1):
If the model predicts -1, the strategy goes short by selling (or taking a short position)
at the current close and buying back 7 days later.

• No Trade (0):
If the model’s confidence is below a threshold (e.g., 80%), the signal is set to 0,
meaning no position is taken.

Backtesting the Strategy

For backtesting:

• 7-Day Returns:
The asset’s 7‑day return is computed as: [_t = - 1]

• Strategy Return:
The trading return is given by: [_t = _t _t]

The backtest aggregates these returns, computes cumulative performance (equity curve),
and then compares the strategy to a buy-and-hold approach.

3. Code Walkthrough
Below we break down key sections of the code, explaining how each component
contributes to the overall strategy.

3.1 Data Acquisition and Preprocessing
from binance.client import Client
import pandas as pd
import numpy as np
import ta

Neural Networks with Kalman Filter for Trading 76

Download price data from Binance
client = Client()
pair = 'ETHUSDC'
data = pd.DataFrame(client.get_historical_klines(pair, '1d', '1 year ago'))
data.columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume',
 'close_time', 'quote_asset_volume', 'trades',
 'taker_buy_base', 'taker_buy_quote', 'ignore']
data['timestamp'] = pd.to_datetime(data['timestamp'], unit='ms')
ohlcv_columns = ['open', 'high', 'low', 'close', 'volume']
data[ohlcv_columns] = data[ohlcv_columns].astype(float)
data.set_index('timestamp', inplace=True)

Shift data to avoid lookahead bias in indicator calculations
data = data.shift()

Explanation:

• Data is fetched using the Binance API and converted into a DataFrame with proper
datetime indexing.

• The .shift() function is used to avoid using current day data for calculations that
would normally be computed using past data.

3.2 Smoothing with the Kalman Filter
from KalmanFilter import KalmanFilter
kf = KalmanFilter(delta_t=1, process_var=1e-7, measurement_var=1e-1)
data[['kalman_price', 'kalman_rate']] = kf.filter(data['close'])

Explanation:

• The Kalman filter is applied to the close price to produce a smoothed price and an
estimated rate of change (velocity).

• These filtered outputs are later used as features for the neural network.

3.3 Rolling Neural Network Training and Prediction
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from tqdm import tqdm

Features used by the neural network (in this case, the Kalman outputs)
features = ['kalman_price', 'kalman_rate']
rolling_window = 30
nn_predictions = []
nn_probabilities = []
actuals = []
prediction_dates = []

Set up scaler and MLP neural network
scaler = StandardScaler()

Neural Networks with Kalman Filter for Trading 77

mlp = MLPClassifier(hidden_layer_sizes=(32, 16), max_iter=500,
random_state=42)

Rolling window loop: Train and predict
for i in tqdm(range(rolling_window, len(data) - 1)):
 # Training data for past window
 X_train = data[features].iloc[i - rolling_window:i]
 y_train = data['direction'].iloc[i - rolling_window:i]
 X_train_scaled = scaler.fit_transform(X_train)

 # Train the network on the rolling window
 mlp.fit(X_train_scaled, y_train)

 # Predict for the next interval
 X_next = data[features].iloc[i].values.reshape(1, -1)
 X_next_scaled = scaler.transform(X_next)
 nn_pred = mlp.predict(X_next_scaled)[0]
 nn_prob = mlp.predict_proba(X_next_scaled)[0]
 nn_predictions.append(nn_pred)
 nn_probabilities.append(nn_prob)

 # Save the actual direction and prediction time
 actuals.append(data['direction'].iloc[i])
 prediction_dates.append(data.index[i])

Explanation:

• Rolling Window: The neural network is retrained on a moving window (30 days) to
adapt to recent market behavior.

• Scaling: Data is standardized using StandardScaler to ensure that features are on
the same scale.

• Prediction: The network predicts the next interval’s direction. The probabilities are
stored for later confidence filtering.

Adjusting Predictions Based on Confidence
Use probabilities to adjust predictions
for i in range(len(nn_predictions)):
 prob = nn_probabilities[i]
 nn_predictions[i] = -1 if prob[0] > prob[1] else 1

Only accept predictions with high confidence (>= 80%)
for i in range(len(nn_predictions)):
 pred = nn_predictions[i]
 confidence = nn_probabilities[i][0] if pred == -1 else
nn_probabilities[i][1]
 if confidence < 0.8:
 nn_predictions[i] = 0

Neural Networks with Kalman Filter for Trading 78

data['nn_predictions'] = 0
data.loc[prediction_dates, 'nn_predictions'] = nn_predictions

Explanation:

• The prediction is chosen based on the higher probability between -1 and 1.
• A confidence threshold is applied—if the probability is less than 80%, the model

issues no trade (signal 0).

3.4 Performance Evaluation and 7-Day Return Calculation
Calculate 7-day returns for the base asset
data['7d_return'] = (data['close'].shift(-7) / data['close']) - 1

Calculate strategy returns based on NN predictions
data['nn_7d_return'] = data['nn_predictions'] * data['7d_return']

Filter rows with valid predictions and returns
predicted_data = data[(data['nn_predictions'] != 0) &
(data['7d_return'].notna())]

Print success rate of NN predictions
predictions = data[['nn_predictions', 'direction']][data['nn_predictions'] !=
0]
success_rate = np.where(predictions['nn_predictions'] ==
predictions['direction'], 1, 0).mean() * 100
print("Neural Network Success Rate: {:.2f}%".format(success_rate))

Explanation:

• 7-Day Returns: The asset’s return over the next 7 days is calculated.
• Strategy Return: The NN signal is multiplied by the 7-day return. A positive signal

captures the asset return for a long position, and a negative signal inverses the
return for a short position.

• Success Rate: The percentage of correct predictions is computed.

3.5 Constructing and Plotting the Equity Curves
NN Strategy Equity Curve
Initialize an equity column and starting capital
data['nn_equity'] = np.nan
equity = 1.0 # Starting capital
i = 0

Simulate non-overlapping trades (skip 8 days after each trade)
while i < len(data) - 7:
 idx_entry = data.index[i]
 data.at[idx_entry, 'nn_equity'] = equity

Neural Networks with Kalman Filter for Trading 79

 signal = data['nn_predictions'].iloc[i]
 entry_price = data['close'].iloc[i]
 exit_price = data['close'].iloc[i + 7]

 if signal == 1:
 trade_return = (exit_price - entry_price) / entry_price
 elif signal == -1:
 trade_return = (entry_price - exit_price) / entry_price
 else:
 trade_return = 0.0

 equity *= (1 + trade_return)
 idx_exit = data.index[i + 7]
 data.at[idx_exit, 'nn_equity'] = equity
 i += 8

Fill missing equity values
data['nn_equity'].ffill(inplace=True)
data['nn_equity'].bfill(inplace=True)

Convert equity to percent profit
data['nn_equity_pct'] = (data['nn_equity'] - 1.0) * 100

Explanation:

• Trade Simulation: The code simulates entering a trade when a signal is generated,
holds the position for 7 days, and then updates the equity.

• Non-Overlapping Trades: After closing a trade, the index is advanced by 8 days to
ensure trades do not overlap.

• Equity Curve: The cumulative equity is forward- and back-filled across the entire
date range and then converted to percent profit.

Buy-and-Hold Equity Curve
Buy and hold strategy: calculate daily returns and cumulative product
data['bh_return'] = data['close'].pct_change()
data['bh_equity'] = (1 + data['bh_return']).cumprod()
data['bh_equity_pct'] = (data['bh_equity'] - 1.0) * 100

Explanation:

• This simple benchmark strategy simulates buying the asset at the beginning and
holding it throughout the period.

• The cumulative return is calculated by taking the cumulative product of daily
returns.

Plotting the Comparison
import matplotlib.pyplot as plt

Neural Networks with Kalman Filter for Trading 80

plt.figure(figsize=(12,6))
plt.plot(data.index, data['bh_equity_pct'], label='Buy & Hold')
plt.plot(data.index, data['nn_equity_pct'], label='NN Strategy')
plt.title('Buy & Hold vs. NN Strategy (Percent Profit)')
plt.xlabel('Date')
plt.ylabel('Percent Profit (%)')
plt.legend()
plt.show()

Explanation:

• The equity curves of the NN strategy and the buy-and-hold approach are plotted on
the same time axis.

• The y-axis is in percent profit, allowing for an intuitive comparison of overall
performance.

4. Conclusion
In this article, we explored how neural networks and the Kalman filter can be integrated
into a trading strategy:

• Neural Networks provide a way to learn complex, nonlinear relationships from
historical data, using layers of weighted transformations and activation functions.

• Kalman Filters help smooth out noisy price data and estimate underlying trends,
producing additional features that can improve prediction accuracy.

• By training a neural network on a rolling window of past data and using its
predictions to determine trading signals (long, short, or no trade), we can simulate a
trading strategy that captures 7‑day returns.

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 81

• The code further demonstrates how to backtest this strategy by constructing an

equity curve, comparing it to a benchmark buy‑and‑hold strategy.

This framework is a starting point for further research and refinement. Future
enhancements might include improved feature engineering, more sophisticated risk
management, and alternative model architectures. As always, caution is advised when
applying these techniques to live trading due to the challenges of market dynamics and
overfitting.

Predicting Bitcoin’s Weekly Moves with 68% Accuracy
using Random Forests in Python
Predicting the direction of volatile assets like Bitcoin is a central challenge in quantitative
finance. While daily noise can make short-term predictions resemble random walks,
analyzing trends over slightly longer horizons, like a week, might offer more traction. This
article details a Python-based approach using a Random Forest classifier and a rolling
forecast methodology to predict whether Bitcoin’s price will be higher or lower seven days
from the present, leveraging a pre-selected set of technical indicators. We’ll cover the
theory, the implementation with code snippets, and how to interpret the results.

1. Theoretical Background

Before diving into the code, let’s understand the core concepts:

a) Random Forest Classifier

• Ensemble Learning: Random Forest is an ensemble machine learning method
primarily used for classification and regression. It operates by constructing a
multitude of individual decision trees during training.

• How it Works:
1. Bagging (Bootstrap Aggregating): It creates multiple random subsets of the

original training data (with replacement). A separate decision tree is trained
on each subset.

2. Feature Randomness: When splitting a node in a decision tree, the
algorithm considers only a random subset of the available features, rather
than all of them. This decorrelates the trees.

3. Voting: For classification, the final prediction is determined by a majority
vote among all the individual trees in the forest. The class predicted by the
most trees wins.

• Advantages:
o Handles non-linear relationships between features and the target well.
o Generally robust to overfitting compared to individual decision trees,

especially when well-tuned.

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 82

o Can handle high-dimensional data (many features).
o Provides useful estimates of Feature Importance, indicating which features

contributed most to the model’s decisions.
• Equations: While the implementation is complex, the core idea relies on

aggregating simple decision trees. The prediction () for an input (x) is often
represented conceptually as: (= _{b=1}^{B} { _b(x) })where B is the number of trees
and (_b(x)) is the prediction of the (b^{th}) tree trained on a bootstrap sample and
considering random feature subsets.

b) Feature Selection (Context)

This script assumes that a preliminary analysis has been performed to identify potentially
predictive features. In our development process, Mutual Information scores were used to
rank ~30 technical indicators based on their statistical relationship with the 1-day price
direction. We will use the top 15 features identified in that analysis as inputs to our
Random Forest model, assuming they might also hold relevance for the 7-day horizon.

c) Rolling Forecast Evaluation

• Why Use It: Financial markets evolve. A model trained on data from years ago might
not perform well today. A simple train-test split doesn’t capture this dynamic. A
rolling forecast provides a more realistic simulation of how a model might perform
when periodically retrained on recent data and used to predict the near future.

• How it Works:
1. Define a fixed-size training window (e.g., the last 30 days).
2. Train the model on the data within this window.
3. Make a prediction for the target period (e.g., 7 days ahead).
4. Slide the window forward by one time step (e.g., one day).
5. Repeat steps 2-4 until the end of the dataset is reached.
6. Evaluate the model based on the aggregated predictions made across all

windows.

d) Classification Metrics

Since we’re predicting direction (Up=1, Down=0), we use classification metrics:

• Accuracy: Overall percentage of correct predictions.
Accuracy=TP+TN+FP+FNTP+TN

• Precision (for class 1): Of the times the model predicted ‘Up’, how often was it
right? Minimizes False Positives (FP). Precision=TP+FPTP

• Recall (Sensitivity, for class 1): Of all the actual ‘Up’ movements, how many did
the model catch? Minimizes False Negatives (FN). Recall=TP+FNTP

• F1-Score (for class 1): Harmonic mean of Precision and Recall, useful for
imbalanced datasets. F1=2×Precision+RecallPrecision×Recall

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 83

• AUC-ROC: Area Under the Receiver Operating Characteristic Curve. Measures the

model’s ability to distinguish between classes across1 different probability
thresholds (0.5 = random, 1.0 = perfect).

• Confusion Matrix: A table visualizing performance:
 Predicted Down (0) Predicted Up (1)
Actual Down (0) True Negative (TN) False Positive(FP)
Actual Up (1) False Negative(FN) True Positive (TP)

2. Python Implementation Details

Let’s walk through the key parts of the Python script.

a) Setup and Configuration

Import libraries and set up parameters. Critically, set PREDICTION_HORIZON = 7 and define
the TRAINING_WINDOW_DAYS and the list of TOP_FEATURES derived from previous analysis.

Python

===
=
Imports

===
=
import pandas as pd
import numpy as np
import yfinance as yf
import talib # Make sure TA-Lib is installed
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (accuracy_score, precision_score, recall_score,
 f1_score, confusion_matrix,
ConfusionMatrixDisplay,
 roc_auc_score)
import warnings
... (warnings configuration) ...

===
=
Configuration

===
=

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 84

TICKER = 'BTC-USD'
START_DATE = '2021-01-01' # Needs enough data for rolling
END_DATE = None
INTERVAL = '1d' # Daily data

--- Rolling Window Parameters ---
TRAINING_WINDOW_DAYS = 30 # Approx 1 month training window
PREDICTION_HORIZON = 7 # Predict direction 7 days ahead

--- Feature Selection ---
Using Top 15 features identified previously from MI analysis
TOP_FEATURES = [
 'ROC_10', 'STOCHRSI_d', 'ADX_14', 'STOCHRSI_k', 'RSI_14',
 'STOCH_k', 'ATR_14', 'EMA_20', 'STOCH_d', 'MACD',
 'ULTOSC', 'BB_upper', 'SAR', 'Open_Close', 'MACD_hist'
]

--- Random Forest Model Parameters ---
N_ESTIMATORS = 150
MAX_DEPTH = 8
MIN_SAMPLES_LEAF = 5
CLASS_WEIGHT = 'balanced'
RANDOM_STATE = 42

b) Data Loading and Indicator Calculation

Standard functions using yfinance and talib are used to fetch OHLCV data and compute
the full set of ~30 technical indicators.

Python

Function definitions for load_data and calculate_indicators
(Use the full function definitions from the previous script response)

In main execution block:
data = load_data(TICKER, START_DATE, END_DATE, INTERVAL)
if data is not None:
 data_indicators = calculate_indicators(data.copy())

c) Target Variable and Feature Preparation

The 7-day target variable (1 if price is higher 7 days later, 0 otherwise) is created. The data
is cleaned of NaNs, and only the TOP_FEATURES columns are selected into
the X_all_features DataFrame, while the Target column becomes Y_all.

Python

Function definition for create_target (horizon=PREDICTION_HORIZON)
(Use the function definition from the previous script response)

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 85

In main execution block:
data_target = create_target(data_indicators, horizon=PREDICTION_HORIZON)
data_processed = data_target.dropna()

available_features = [f for f in TOP_FEATURES if f in data_processed.columns]
... (Error handling if features are missing) ...

X_all_features = data_processed[available_features]
Y_all = data_processed['Target']
Dates_all = data_processed.index # Keep dates for plotting results

d) The Rolling Forecast Loop

This is the core logic change from a simple train/test split.

Python

--- Rolling Forecast Loop ---
all_predictions = []
all_actuals = []
all_predict_dates = []
all_probabilities = []

start_index = TRAINING_WINDOW_DAYS
end_index = len(X_all_features) - PREDICTION_HORIZON

print(f"\nStarting rolling forecast from index {start_index} to {end_index-
1}...")

for i in range(start_index, end_index):
 # 1. Define window boundaries
 train_start_idx = i - TRAINING_WINDOW_DAYS
 train_end_idx = i
 predict_feature_idx = i
 actual_target_idx = i

 # 2. Extract current window data
 X_train_window = X_all_features.iloc[train_start_idx:train_end_idx]
 Y_train_window = Y_all.iloc[train_start_idx:train_end_idx]
 X_predict_point = X_all_features.iloc[[predict_feature_idx]]
 Y_actual_point = Y_all.iloc[actual_target_idx]

 # 3. Scale features WITHIN the loop
 scaler = StandardScaler()
 X_train_scaled = scaler.fit_transform(X_train_window)
 X_predict_scaled = scaler.transform(X_predict_point)

 # 4. Build and Train Model WITHIN the loop

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 86

 rf_model = RandomForestClassifier(
 n_estimators=N_ESTIMATORS,
 max_depth=MAX_DEPTH,
 min_samples_leaf=MIN_SAMPLES_LEAF,
 random_state=RANDOM_STATE,
 n_jobs=-1,
 class_weight=CLASS_WEIGHT
)
 rf_model.fit(X_train_scaled, Y_train_window)

 # 5. Predict and Store Results
 prediction = rf_model.predict(X_predict_scaled)[0]
 probability = rf_model.predict_proba(X_predict_scaled)[0, 1] # Robust
extraction might be needed here too

 all_predictions.append(prediction)
 all_actuals.append(Y_actual_point)
 all_probabilities.append(probability)
 all_predict_dates.append(Dates_all[actual_target_idx])

 # ... (Optional progress print) ...

print("Rolling forecast complete.")

Crucially, the StandardScaler and RandomForestClassifier are initialized and fitted
inside the loop on each window’s data.

e) Aggregated Evaluation

After the loop completes, the collected predictions and actual values are used to calculate
the overall performance metrics.

Python

--- Evaluate Aggregated Results ---
if not all_actuals:
 print("No predictions were made.")
else:
 print("\n--- Aggregated Rolling Forecast Metrics ---")
 accuracy = accuracy_score(all_actuals, all_predictions)
 precision = precision_score(all_actuals, all_predictions,
zero_division=0)
 recall = recall_score(all_actuals, all_predictions, zero_division=0)
 f1 = f1_score(all_actuals, all_predictions, zero_division=0)
 try:
 roc_auc = roc_auc_score(all_actuals, all_probabilities)
 except ValueError:
 roc_auc = float('nan')
 # ... (print warning) ...

Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in
Python 87

 print(f"Accuracy: {accuracy:.4f}")
 print(f"Precision (for 1):{precision:.4f}")
 # ... (print other metrics) ...

 # Baseline comparison
 majority_class_overall = Y_all.value_counts().idxmax()
 baseline_accuracy = accuracy_score(all_actuals, np.full(len(all_actuals),
majority_class_overall))
 print(f"\nBaseline Accuracy (...): {baseline_accuracy:.4f}")

 # Confusion Matrix Plotting
 print("\n--- Confusion Matrix (Aggregated Rolling Forecast) ---")
 cm = confusion_matrix(all_actuals, all_predictions)
 print(cm)
 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[0, 1])
 # ... (Plotting code for CM) ...
 plt.show()

 # Optional: Plot actual vs predicted directions over time
 # ... (Plotting code for results_df) ...
 plt.show()

3. Results and Interpretation (Based on Your Last Run)

Your last run with this rolling Random Forest approach yielded:

• Accuracy: ~0.6793 (vs. Baseline ~0.5136)
• Precision (Up): ~0.6919
• Recall (Up): ~0.6772
• F1-Score (Up): ~0.6845
• AUC-ROC: ~0.7524
• Confusion Matrix: [[122 57] / [61 128]]

Interpretation:

These results show a clear improvement over random chance and the baseline of simply
predicting the majority class. The model achieved ~68% accuracy in predicting the 7-day
direction over the rolling test period. Precision and Recall are reasonably balanced (around
68-69%), indicating the model identifies ‘Up’ moves moderately well without excessively
predicting ‘Up’ incorrectly. The AUC of ~0.75 suggests a decent discriminatory ability.
While not perfect, these results indicate that the combination of selected features, the
Random Forest model, and the rolling approach captured a statistically significant
predictive signal in the historical data tested.

4. How to Use the Code

Trading Using Neural Networks 88

1. Install Prerequisites: Ensure

Python, pandas, numpy, yfinance, matplotlib, seaborn, scikit-learn, and
crucially, TA-Lib (C library + Python wrapper) are installed.

2. Save: Save the complete code as a Python file (e.g., rolling_rf_btc.py).
3. Configure: Modify settings

like TICKER, START_DATE, TRAINING_WINDOW_DAYS, PREDICTION_HORIZON, or Random
Forest parameters if desired.

4. Run: Execute from your terminal: python rolling_rf_btc.py. It will take some
time as the model retrains repeatedly.

5. Analyze: Review the printed metrics and the confusion matrix plot. Compare
accuracy to the baseline. Assess if the Precision/Recall/F1/AUC meet your
requirements for considering a signal potentially useful.

5. Limitations and Conclusion

• Historical Performance: Success on past data doesn’t guarantee future results.
Markets change.

• Not a Trading Strategy: This analyzes predictive accuracy ONLY. It lacks entry/exit
rules, risk management, cost simulation, etc.

• Need for Tuning/Testing: Results depend heavily on the chosen features,
hyperparameters, and time period. Extensive testing and tuning are required for any
real application.

• Feature Stability: The selected TOP_FEATURES might lose predictive power over
time.

In conclusion, this script provides a robust framework for evaluating the predictive power
of technical indicators for Bitcoin’s weekly direction using a Random Forest model and a
realistic rolling forecast method. The results achieved (~68% accuracy, ~0.75 AUC
historically) demonstrate a potential edge worthy of further investigation, but require
critical interpretation and significant further development before any practical trading
application.

Trading Using Neural Networks
In this article, we explore the development of a trading strategy for Bitcoin using a neural
network model and various technical indicators. By leveraging 15-minute interval data, we
aim to predict short-term price movements and compare the returns from our strategy
against a traditional buy-and-hold approach.

Introduction to Neural Networks

Neural networks are a class of machine learning models inspired by the structure and
functioning of the human brain. They are designed to recognize patterns, make decisions,
and learn from data through a process of training and optimization. Here’s a brief overview

Trading Using Neural Networks 89

of how neural networks work and their significance in modern machine learning and
artificial intelligence.

1. Basic Structure

A neural network consists of layers of interconnected nodes or neurons. The basic
components are:

• Input Layer: The first layer that receives the raw data. Each neuron in this layer
represents a feature or input variable.

• Hidden Layers: Intermediate layers between the input and output layers where
computation and transformation of data occur. Neural networks can have multiple
hidden layers, which allows them to learn complex patterns and features.

• Output Layer: The final layer that produces the prediction or classification result.
The number of neurons in this layer corresponds to the number of possible outputs.

2. Neurons and Activation Functions

Each neuron in a neural network receives inputs, applies a weighted sum, and passes the
result through an activation function. The activation function introduces non-linearity into
the model, enabling it to learn complex patterns. Common activation functions include:

• Sigmoid: Maps inputs to a value between 0 and 1.
• ReLU (Rectified Linear Unit): Outputs the input directly if it is positive; otherwise, it

outputs zero.
• Tanh: Maps inputs to a value between -1 and 1.

3. Training Neural Networks

Training a neural network involves adjusting its weights and biases to minimize the error
between the predicted output and the actual output. This is typically done using:

• Forward Propagation: The process of passing input data through the network to
obtain predictions.

• Loss Function: A measure of the difference between the predicted output and the
actual output. Common loss functions include mean squared error (MSE) and
cross-entropy loss.

• Backpropagation: An algorithm used to update the weights and biases based on
the error. It involves computing the gradient of the loss function with respect to
each weight using the chain rule and adjusting the weights to reduce the error.

• Optimizer: An algorithm that adjusts the weights to minimize the loss function.
Popular optimizers include Stochastic Gradient Descent (SGD), Adam, and
RMSprop.

4. Types of Neural Networks

Trading Using Neural Networks 90

• Feedforward Neural Networks: The simplest type, where connections between

nodes do not form cycles. Used for straightforward prediction tasks.
• Convolutional Neural Networks (CNNs): Designed for processing grid-like data,

such as images. They use convolutional layers to detect spatial hierarchies.
• Recurrent Neural Networks (RNNs): Suitable for sequential data, such as time

series or natural language. They have connections that form cycles, allowing them
to maintain context and memory.

• Generative Adversarial Networks (GANs): Consist of two networks—a generator
and a discriminator—that compete against each other, used for generating realistic
synthetic data.

Step 1: Downloading Bitcoin Price Data

We start by pulling 15-minute interval Bitcoin price data from Yahoo Finance using the
yfinance library. The data spans the most recent month.

import yfinance as yf

btc_data = yf.download(‘BTC-USD’, interval=‘15m’, period=‘1mo’)

Step 2: Calculating Technical Indicators

Next, we compute several key technical indicators using the TA-Lib library:

• EMA_12: 12-period Exponential Moving Average.
• EMSD_12: 12-period Exponential Moving Standard Deviation.
• RSI_14: 14-period Relative Strength Index.

These indicators serve as inputs to the neural network model.

import talib as ta
btc_data['EMA_12'] = ta.EMA(btc_data['Close'], timeperiod=12)
btc_data['EMSD_12'] = ta.STDDEV(btc_data['Close'], timeperiod=12)
btc_data['RSI_14'] = ta.RSI(btc_data['Close'], timeperiod=14)
btc_data.dropna(inplace=True)

Step 3: Preparing Input Features and Target

We standardize the features using MinMaxScaler and prepare the target variable as a
binary outcome: whether the next period’s close price is higher than the current period’s
close price.

from sklearn.preprocessing import MinMaxScaler
import numpy as np

features = btc_data[['EMA_12', 'EMSD_12', 'RSI_14']]
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_features = scaler.fit_transform(features)

Trading Using Neural Networks 91

btc_data['Target'] = np.where(btc_data['Close'].shift(-1) >
btc_data['Close'], 1, 0)
btc_data.dropna(inplace=True)
target = btc_data['Target']

Step 4: Building the Neural Network Model

The neural network is constructed using Keras, with the architecture consisting of an input
layer, five hidden layers with ReLU activation, and an output layer using the softmax
function. The model is trained using the Adam optimizer.

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam

model = Sequential()
model.add(Dense(12, input_dim=3, activation='relu'))
model.add(Dense(40, activation='relu'))
model.add(Dense(30, activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation='relu'))
model.add(Dense(4, activation='softmax'))

model.compile(optimizer=Adam(learning_rate=0.001),
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(scaled_features, target, epochs=400, batch_size=500, verbose=2)

Step 5: Training and Evaluating the Model

We split the data into training and test sets, retrain the model on the training data, and then
evaluate its performance on the test data. We calculate accuracy and generate a
classification report.

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score

X_train, X_test, y_train, y_test = train_test_split(scaled_features, target,
test_size=0.2, random_state=42)
model.fit(X_train, y_train, epochs=400, batch_size=500, verbose=2)

scores = model.evaluate(X_test, y_test)
y_pred = np.argmax(model.predict(X_test), axis=1)

accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

print(f"Test Accuracy: {accuracy}")

Trading Using Neural Networks 92

print("Classification Report:")
print(report)

Step 6: Comparing Strategy Returns with Buy-and-Hold

To assess the effectiveness of our neural network strategy, we compare the cumulative
returns from both the buy-and-hold strategy and our model’s predictions.

• Buy-and-Hold Returns: Calculated as the cumulative sum of logarithmic returns.
• Strategy Returns: Determined by the model’s predicted signals.

We then plot both cumulative returns on the same graph.

import matplotlib.pyplot as plt

btc_data['Buy_Hold_Returns'] = np.log(btc_data['Close'] /
btc_data['Close'].shift(1))
btc_data['Buy_Hold_Cumulative'] = btc_data['Buy_Hold_Returns'].cumsum()

btc_data['Signal'] = model.predict(scaled_features).argmax(axis=1)
btc_data['Strategy_Returns'] = btc_data['Signal'].shift(1) *
btc_data['Buy_Hold_Returns']
btc_data['Strategy_Cumulative'] = btc_data['Strategy_Returns'].cumsum()

plt.figure(figsize=(14, 7))
plt.plot(btc_data.index, btc_data['Buy_Hold_Cumulative'], label='Buy and Hold
Strategy', color='blue')
plt.plot(btc_data.index, btc_data['Strategy_Cumulative'], label='NN
Strategy', color='green')
plt.title('Cumulative Returns: Buy and Hold vs. NN Strategy')
plt.xlabel('Date')
plt.ylabel('Cumulative Returns')
plt.legend()
plt.show()

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 93

Conclusion

The graph comparing the cumulative returns of the buy-and-hold strategy with those of our
neural network-based strategy reveals the potential of using machine learning for short-
term trading. While the buy-and-hold strategy offers steady returns, the neural network
model can potentially capture more significant price movements, leading to better overall
performance during volatile periods.

This exercise demonstrates the power of combining technical analysis with machine
learning to create trading strategies that adapt to market conditions. As always, further
tuning and validation are essential before deploying such strategies in live trading
environments.

What if Darwin Traded Crypto An Experiment with
Evolutionary AI & Neural Nets
Algorithmic trading, the use of computer programs to execute trading strategies, has
revolutionized financial markets. Designing profitable strategies, however, remains a
significant challenge. It often involves navigating complex market dynamics, identifying
predictive patterns, and managing risk effectively. Machine learning and optimization
techniques offer powerful tools to tackle this complexity.

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 94

This article delves into one such approach: using an Evolution Strategy (ES), a type of
optimization algorithm inspired by natural evolution, to train a simple Neural Network
(NN) based trading agent. We will explore the underlying theory of ES and NNs in this
context, walk through a Python implementation using yfinance for Bitcoin data, and
emphasize the importance of realistic backtesting with train/test splits.

Background Theory

1. Evolution Strategies (ES)

Evolution Strategies are a class of optimization algorithms belonging to the broader field of
Evolutionary Computation. Unlike Genetic Algorithms (GAs) which often work with discrete
representations (like binary strings) and rely heavily on crossover, ES typically operates
directly on real-valued parameter vectors (like the weights of a neural network) and
primarily uses mutation (often Gaussian noise) and selection to guide the search towards
optimal solutions.

• Core Idea: ES maintains a “population” of candidate solutions (parameter vectors).
In each generation (iteration), it creates new candidate solutions by adding random
perturbations (mutations) to the current best solution(s). It then evaluates the
“fitness” (performance) of these new solutions using an objective function (in our
case, a trading simulation reward). Finally, it updates the central solution vector by
taking a weighted average of the perturbations, where the weights are determined
by the fitness scores of the corresponding perturbed solutions. Solutions that yield
better fitness contribute more to the direction of the update.

• Simplified ES Update: A common, basic form of ES update rule for a parameter
vector (or weight matrix) W can be expressed conceptually as:

 [W_{t+1}=W_t+_{k=1}^{N}R_k_k]

 Where:

o Wt is the parameter vector at iteration t.
o α is the learning rate (step size).
o N is the population size.
o σ is the standard deviation of the Gaussian noise (mutation strength).
o ϵk is the random Gaussian noise vector added to create the kth population

member (Wt+σϵk).
o Rk is the fitness (reward) obtained by the kth population member, often

normalized (e.g., converted to standard scores).
 This update essentially moves the current parameters Wt in a direction that is

positively correlated with the perturbations that led to higher rewards.

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 95

• Advantages: ES can be very effective for optimizing parameters of complex, non-

differentiable systems where gradients are hard or impossible to compute (like the
overall profit of a multi-step trading simulation). It’s a black-box optimization
technique.

2. Neural Networks (NNs) for Policy Representation

In our agent, the neural network acts as the “brain” or the policy. It maps the current
market state to a preferred action.

• Function: It’s a function approximator. Given an input vector representing the
market state, it outputs scores indicating the desirability of each possible action
(Buy, Sell, Hold).

• Simple Structure: We use a basic feedforward network with one hidden layer:
o Input Layer: Receives the state vector (e.g., recent price changes).
o Hidden Layer: Performs a linear transformation (Input⋅Whidden+Biashidden)

followed potentially by a non-linear activation (though our implementation
uses an implicit linear activation here). This layer learns intermediate
features.

o Output Layer: Performs another linear transformation
(HiddenOutput⋅Woutput) to produce the final action scores.

• Parameters: The network’s behavior is determined by its weights (Whidden
,Woutput) and biases (Biashidden). These are the parameters that the Evolution
Strategy optimizes.

3. Trading Agent Framework

We can frame the trading problem in terms similar to Reinforcement Learning (RL),
although ES optimizes differently:

• Agent: The program making trading decisions.
• Environment: The financial market (Bitcoin price time series).
• State (St): A representation of the market at time t. Choosing a good state

representation is crucial. Using raw prices can be problematic due to non-
stationarity. Price changes or returns over a lookback window are often preferred,
as used in our implementation.

• Action (At): The decision made by the agent at time t (e.g., Buy, Sell, Hold).
• Reward (Rt): A measure of how good the outcome was after taking actions. In ES

applied to trading, the reward is typically sparse – calculated only at the end of a
simulation episode (e.g., the total percentage profit/loss over the training period).

The Implemented Method: ES Optimizing NN Weights via Simulated Trading

Our approach uses the Evolution Strategy to directly optimize the weights of the neural
network policy.

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 96

1. The ES generates variations (population members) of the current NN weights.
2. For each set of weights, the _calculate_reward_on_train function is called. This

function simulates the agent trading over the entire training dataset using the NN
with those specific weights to decide actions (Buy/Sell/Hold) at each step.

3. The simulation result (final percentage profit/loss on the training data) is returned
as the fitness score (reward) for that set of weights.

4. The ES uses these rewards to update the central NN weights according to its update
rule, aiming to find weights that maximize the simulated profit on the training data.

Implementation Details (Python)

Let’s look at the key parts of the Python code (using the version with the train/test split).

1. Data Handling and Splitting

We fetch historical Bitcoin data using yfinance and then split it chronologically into
training and testing sets. This ensures we train the agent on one period and evaluate it on a
completely separate, later period.

Python

import yfinance as yf
import numpy as np
import pandas as pd

ticker = 'BTC-USD'
try:
 # Fetch 3 years data for a reasonable split
 df = yf.download(ticker, period='3y')
 if df.empty:
 raise ValueError(f"No data fetched for {ticker}.")
 print(f"Fetched {len(df)} rows of data for {ticker}")
 df = df.sort_index()
 all_prices = df['Close'].values
 all_dates = df.index
except Exception as e:
 print(f"Error fetching data: {e}")
 exit()

Split data: 80% train, 20% test
test_size_percentage = 0.20
split_index = int(len(all_prices) * (1 - test_size_percentage))

train_prices = all_prices[:split_index]
test_prices = all_prices[split_index:]
train_dates = all_dates[:split_index]
test_dates = all_dates[split_index:]

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 97

print(f"Data split: {len(train_prices)} training samples, {len(test_prices)}
testing samples.")

Explanation: We get 3 years of daily closing prices for BTC-USD. We calculate an index
(split_index) to divide the data, assigning the earlier 80% to train_prices and the later
20% to test_prices. Corresponding dates are also separated.

2. Neural Network Model (SimpleModel)

This class defines the structure and prediction logic of our simple neural network.

Python

class SimpleModel:
 """ A simple neural network model with one hidden layer. """
 def __init__(self, input_size, layer_size, output_size):
 # Initialize weights randomly with small values
 self.weights = [
 np.random.randn(input_size, layer_size) * 0.1, # Input -> Hidden
 np.random.randn(layer_size, output_size) * 0.1, # Hidden ->
Output
 np.random.randn(1, layer_size) * 0.1 # Hidden layer
bias
]

 def predict(self, inputs):
 """ Makes a prediction based on the inputs and current weights. """
 if inputs.ndim == 1: inputs = inputs.reshape(1, -1) # Ensure input is
2D
 # Linear transformation for hidden layer + bias
 hidden_input = np.dot(inputs, self.weights[0]) + self.weights[2]
 # Linear activation (no non-linearity applied in this version)
 hidden_output = hidden_input
 # Linear transformation for output layer
 final_output = np.dot(hidden_output, self.weights[1])
 return final_output # Returns raw scores for actions

 def get_weights(self):
 return [w.copy() for w in self.weights] # Return copies

 def set_weights(self, weights):
 self.weights = [w.copy() for w in weights] # Use copies

Explanation: The model stores weights for input-to-hidden, hidden-to-output layers, and a
bias for the hidden layer. The predict method performs matrix multiplications to calculate
output scores based on the input state. get_weights and set_weights are used by the ES
and Agent.

3. Evolution Strategy (EvolutionStrategy)

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 98

This class implements the optimization algorithm.

Python

class EvolutionStrategy:
 # ... (init, _get_perturbed_weights) ...

 def train(self, iterations=100, print_every=10):
 # ... (setup) ...
 for i in range(iterations):
 # 1. Generate population noise vectors (epsilon_k)
 population_noise = []
 rewards = np.zeros(self.population_size)
 for _ in range(self.population_size):
 member_noise = [np.random.randn(*w.shape) for w in
self.weights]
 population_noise.append(member_noise)

 # 2. Evaluate population fitness (R_k)
 for k in range(self.population_size):
 perturbed_weights = self._get_perturbed_weights(self.weights,
population_noise[k])
 # This calls Agent._calculate_reward_on_train
 rewards[k] = self.reward_function(perturbed_weights)

 # 3. Normalize rewards
 if np.std(rewards) > 1e-7:
 rewards = (rewards - np.mean(rewards)) / np.std(rewards)
 else:
 rewards = np.zeros_like(rewards)

 # 4. Calculate weighted sum of noise
 weighted_noise_sum = [np.zeros_like(w) for w in self.weights]
 for k in range(self.population_size):
 member_noise = population_noise[k]
 for j in range(len(self.weights)):
 # Summing R_k * epsilon_k for each weight matrix/vector
 weighted_noise_sum[j] += member_noise[j] * rewards[k]

 # 5. Update central weights (W_t+1 = W_t + update)
 update_factor = self.learning_rate / (self.population_size *
self.sigma)
 for j in range(len(self.weights)):
 self.weights[j] += update_factor * weighted_noise_sum[j]

 # ... (logging) ...
 # ... (end timing) ...

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 99

 def get_weights(self):
 return self.weights

Explanation: The train method implements the ES loop: generate random noise
(population_noise), create perturbed weights, evaluate them using
the reward_function (which simulates trading on the training set), normalize rewards,
compute the weighted sum of noise based on rewards, and finally update the central
weights using the learning rate and population parameters.

4. Trading Agent (TradingAgent)

This class orchestrates the process, connecting the model, the ES, and the environment
simulation.

Python

class TradingAgent:
 # ... (constants, __init__) ...

 def _get_state(self, t):
 """ Returns the state (price changes) at index t using all_prices.
"""
 start_index = max(0, t - self.window_size)
 end_index = t + 1
 window_prices = self.all_prices[start_index : end_index]
 # Calculate price differences (returns)
 price_diffs = np.diff(window_prices)
 # Pad if needed to ensure fixed size
 padded_diffs = np.zeros(self.window_size)
 if len(price_diffs) > 0:
 padded_diffs[-len(price_diffs):] = price_diffs
 return padded_diffs.reshape(1, -1)

 def _decide_action(self, state):
 """ Uses the model to decide action (0=hold, 1=buy, 2=sell). """
 prediction_scores = self.model.predict(state)
 return np.argmax(prediction_scores[0]) # Action with highest score

 def _calculate_reward_on_train(self, weights):
 """ Fitness function for ES: Simulates trading ONLY on training data.
"""
 self.model.set_weights(weights) # Use candidate weights
 money = self.initial_money
 inventory = 0.0
 # Simulate only within the training data indices
 start_sim_index = self.window_size
 end_sim_index = self.train_end_index
 for t in range(start_sim_index, end_sim_index, self.skip):
 state = self._get_state(t)

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 100

 action = self._decide_action(state)
 price_now = self.all_prices[t]
 # Simplified fractional buy/sell logic
 if action == 1 and money > self.min_order_size * price_now:
 buy_units = (money * 0.5) / price_now # Example: invest 50%
cash
 if buy_units >= self.min_order_size:
 inventory += buy_units; money -= buy_units * price_now
 elif action == 2 and inventory >= self.min_order_size:
 sell_units = inventory * 0.5 # Example: sell 50% inventory
 if sell_units >= self.min_order_size:
 money += sell_units * price_now; inventory -= sell_units
 # Calculate final value based on last training price
 final_value = money + inventory * self.all_prices[end_sim_index -1]
 reward = ((final_value - self.initial_money) / self.initial_money) *
100
 return reward

 def train_agent(self, iterations, checkpoint):
 """ Trains the agent using ES on the training data. """
 self.es.train(iterations, print_every=checkpoint)
 self.model.set_weights(self.es.get_weights()) # Use the final weights

 def run_test_simulation(self, test_dates_param, return_logs=True):
 """ Evaluates the TRAINED agent ONLY on the test data. """
 print("\nRunning final simulation on UNSEEN TEST DATA...")
 money = self.initial_money
 inventory = 0.0
 states_buy_test, states_sell_test, log = [], [], []
 # Simulate only within the test data indices
 start_test_sim_index = self.train_end_index
 end_test_sim_index = len(self.all_prices) - 1
 for t in range(start_test_sim_index, end_test_sim_index, self.skip):
 state = self._get_state(t)
 action = self._decide_action(state) # Use trained model
 price_now = self.all_prices[t]
 test_set_index = t - start_test_sim_index
 timestamp = test_dates_param[test_set_index]
 # ... (Execute buy/sell logic as in _calculate_reward) ...
 # ... (Logging actions) ...
 # Calculate final value based on last test price
 final_value = money + inventory * self.all_prices[-1]
 total_gains = final_value - self.initial_money
 invest_percent = ((final_value - self.initial_money) /
self.initial_money) * 100
 # ... (Print results) ...
 return states_buy_test, states_sell_test, total_gains,
invest_percent, log

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 101

Explanation: The agent manages the overall process. _get_state prepares the NN
input. _decide_action gets the NN prediction. _calculate_reward_on_train simulates
trading only on the training price range to provide the fitness score for the
ES. train_agent runs the ES optimization. run_test_simulation uses the final, trained
weights to simulate trading only on the unseen test price range, providing a realistic
performance evaluation.

5. Main Execution and Plotting

This part sets up the parameters, creates the objects, runs the training, runs the test
simulation, and plots the results focusing on the test period.

Python

--- Main Execution ---
WINDOW_SIZE = 30
SKIP = 1
INITIAL_MONEY = 10000
LAYER_SIZE = 128
OUTPUT_SIZE = 3
ITERATIONS = 200
CHECKPOINT = 20

Create Model and Agent
model = SimpleModel(input_size=WINDOW_SIZE, layer_size=LAYER_SIZE,
output_size=OUTPUT_SIZE)
agent = TradingAgent(model=model,
 all_prices=all_prices,
 train_end_index=split_index, # Pass split index
 window_size=WINDOW_SIZE,
 initial_money=INITIAL_MONEY,
 skip=SKIP)

Train the Agent (uses training data internally)
agent.train_agent(iterations=ITERATIONS, checkpoint=CHECKPOINT)

Evaluate the Agent (uses test data internally)
states_buy_test, states_sell_test, total_gains_test, invest_percent_test,
logs_test = agent.run_test_simulation(test_dates_param=test_dates)

--- Plotting (Focus on Test Set Performance) ---
fig, ax = plt.subplots(figsize=(15, 7))
Plot train data (grayed out)
ax.plot(train_dates, train_prices, color='gray', lw=1.0, label='Train Price',
alpha=0.5)
Plot test data
ax.plot(test_dates, test_prices, color='lightblue', lw=1.5, label='Test
Price')

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 102

Plot buy/sell markers on test data
buy_marker_dates = test_dates[states_buy_test]
... (rest of plotting code) ...
plt.show()

Explanation: We define hyperparameters, instantiate the model and agent (passing the full
price list and the training end index). We call train_agent, then run_test_simulation. The
plot visualizes both price series but highlights the trades made during the test period.

Sample Results The results using the 3-year period Bitcoin data, 80% of which we used for
training the model and the remaining recent 20% for testing its performance are as follows:

Data split: 877 training samples, 220 testing samples.
Training data from 2022-05-04 to 2024-09-26
Testing data from 2024-09-27 to 2025-05-04
Starting Evolution Strategy training for 200 iterations...
Iteration 20/200. Current Reward (on train set): 432.9548
Iteration 40/200. Current Reward (on train set): 625.9546
Iteration 60/200. Current Reward (on train set): 920.6560
Iteration 80/200. Current Reward (on train set): 1004.2816
Iteration 100/200. Current Reward (on train set): 1125.9427
Iteration 120/200. Current Reward (on train set): 1108.8394
Iteration 140/200. Current Reward (on train set): 1231.4112
Iteration 160/200. Current Reward (on train set): 1212.2319
Iteration 180/200. Current Reward (on train set): 1282.9231
Iteration 200/200. Current Reward (on train set): 1377.4133
Training finished in 87.46 seconds.
Final Reward on training set: 1377.4133

Running final simulation on UNSEEN TEST DATA...
Test Day 2 (2024-09-29): Buy 0.076179 units at $65,635.30, Bal: $5,000.00,
Inv: 0.076179
Test Day 3 (2024-09-30): Buy 0.039476 units at $63,329.50, Bal: $2,500.00,
Inv: 0.115655
Test Day 4 (2024-10-01): Sell 0.057827 units at $60,837.01, Bal: $6,018.04,
Inv: 0.057827
Test Day 5 (2024-10-02): Buy 0.049627 units at $60,632.79, Bal: $3,009.02,
Inv: 0.107454
Test Day 9 (2024-10-06): Buy 0.023950 units at $62,818.95, Bal: $1,504.51,
Inv: 0.131404
Test Day 10 (2024-10-07): Buy 0.012087 units at $62,236.66, Bal: $752.25,
Inv: 0.143491
Test Day 11 (2024-10-08): Sell 0.071746 units at $62,131.97, Bal: $5,209.95,
Inv: 0.071746
Test Day 12 (2024-10-09): Sell 0.035873 units at $60,582.10, Bal: $7,383.20,
Inv: 0.035873
Test Day 14 (2024-10-11): Buy 0.059118 units at $62,445.09, Bal: $3,691.60,
Inv: 0.094990
Test Day 16 (2024-10-13): Sell 0.047495 units at $62,851.38, Bal: $6,676.74,

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 103

Inv: 0.047495
Test Day 17 (2024-10-14): Buy 0.050546 units at $66,046.12, Bal: $3,338.37,
Inv: 0.098041
Test Day 18 (2024-10-15): Buy 0.024898 units at $67,041.11, Bal: $1,669.18,
Inv: 0.122939
Test Day 19 (2024-10-16): Buy 0.012344 units at $67,612.72, Bal: $834.59,
Inv: 0.135283
Test Day 20 (2024-10-17): Buy 0.006191 units at $67,399.84, Bal: $417.30,
Inv: 0.141474
Test Day 27 (2024-10-24): Sell 0.070737 units at $68,161.05, Bal: $5,238.81,
Inv: 0.070737
Test Day 30 (2024-10-27): Buy 0.038561 units at $67,929.30, Bal: $2,619.40,
Inv: 0.109298
Test Day 31 (2024-10-28): Buy 0.018735 units at $69,907.76, Bal: $1,309.70,
Inv: 0.128033
Test Day 32 (2024-10-29): Buy 0.009005 units at $72,720.49, Bal: $654.85,
Inv: 0.137038
Test Day 33 (2024-10-30): Buy 0.004526 units at $72,339.54, Bal: $327.43,
Inv: 0.141564
Test Day 34 (2024-10-31): Sell 0.070782 units at $70,215.19, Bal: $5,297.39,
Inv: 0.070782
Test Day 35 (2024-11-01): Sell 0.035391 units at $69,482.47, Bal: $7,756.44,
Inv: 0.035391
Test Day 36 (2024-11-02): Sell 0.017695 units at $69,289.27, Bal: $8,982.55,
Inv: 0.017695
Test Day 37 (2024-11-03): Sell 0.008848 units at $68,741.12, Bal: $9,590.75,
Inv: 0.008848
Test Day 38 (2024-11-04): Buy 0.070716 units at $67,811.51, Bal: $4,795.38,
Inv: 0.079564
Test Day 39 (2024-11-05): Buy 0.034569 units at $69,359.56, Bal: $2,397.69,
Inv: 0.114133
Test Day 40 (2024-11-06): Buy 0.015850 units at $75,639.08, Bal: $1,198.84,
Inv: 0.129982
Test Day 41 (2024-11-07): Buy 0.007897 units at $75,904.86, Bal: $599.42,
Inv: 0.137880
Test Day 42 (2024-11-08): Buy 0.003915 units at $76,545.48, Bal: $299.71,
Inv: 0.141795
Test Day 43 (2024-11-09): Buy 0.001952 units at $76,778.87, Bal: $149.86,
Inv: 0.143747
Test Day 47 (2024-11-13): Sell 0.071873 units at $90,584.16, Bal: $6,660.45,
Inv: 0.071873
Test Day 48 (2024-11-14): Buy 0.038169 units at $87,250.43, Bal: $3,330.22,
Inv: 0.110042
Test Day 49 (2024-11-15): Sell 0.055021 units at $91,066.01, Bal: $8,340.76,
Inv: 0.055021
Test Day 50 (2024-11-16): Buy 0.046052 units at $90,558.48, Bal: $4,170.38,
Inv: 0.101073
Test Day 52 (2024-11-18): Buy 0.023030 units at $90,542.64, Bal: $2,085.19,
Inv: 0.124103

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 104

Test Day 54 (2024-11-20): Buy 0.011052 units at $94,339.49, Bal: $1,042.60,
Inv: 0.135154
Test Day 55 (2024-11-21): Buy 0.005292 units at $98,504.73, Bal: $521.30,
Inv: 0.140446
Test Day 57 (2024-11-23): Buy 0.002666 units at $97,777.28, Bal: $260.65,
Inv: 0.143112
Test Day 58 (2024-11-24): Sell 0.071556 units at $98,013.82, Bal: $7,274.13,
Inv: 0.071556
Test Day 59 (2024-11-25): Sell 0.035778 units at $93,102.30, Bal: $10,605.14,
Inv: 0.035778
Test Day 60 (2024-11-26): Sell 0.017889 units at $91,985.32, Bal: $12,250.67,
Inv: 0.017889
Test Day 62 (2024-11-28): Buy 0.064037 units at $95,652.47, Bal: $6,125.34,
Inv: 0.081926
Test Day 63 (2024-11-29): Buy 0.031424 units at $97,461.52, Bal: $3,062.67,
Inv: 0.113351
Test Day 64 (2024-11-30): Buy 0.015877 units at $96,449.05, Bal: $1,531.33,
Inv: 0.129228
Test Day 65 (2024-12-01): Buy 0.007871 units at $97,279.79, Bal: $765.67,
Inv: 0.137099
Test Day 66 (2024-12-02): Buy 0.003993 units at $95,865.30, Bal: $382.83,
Inv: 0.141092
Test Day 68 (2024-12-04): Buy 0.001938 units at $98,768.53, Bal: $191.42,
Inv: 0.143030
Test Day 70 (2024-12-06): Sell 0.071515 units at $99,920.71, Bal: $7,337.25,
Inv: 0.071515
Test Day 72 (2024-12-08): Buy 0.036238 units at $101,236.02, Bal: $3,668.63,
Inv: 0.107753
Test Day 73 (2024-12-09): Buy 0.018826 units at $97,432.72, Bal: $1,834.31,
Inv: 0.126580
Test Day 74 (2024-12-10): Sell 0.063290 units at $96,675.43, Bal: $7,952.90,
Inv: 0.063290
Test Day 75 (2024-12-11): Sell 0.031645 units at $101,173.03, Bal:
$11,154.52, Inv: 0.031645
Test Day 77 (2024-12-13): Buy 0.054970 units at $101,459.26, Bal: $5,577.26,
Inv: 0.086615
Test Day 78 (2024-12-14): Buy 0.027509 units at $101,372.97, Bal: $2,788.63,
Inv: 0.114124
Test Day 79 (2024-12-15): Buy 0.013368 units at $104,298.70, Bal: $1,394.31,
Inv: 0.127492
Test Day 80 (2024-12-16): Buy 0.006575 units at $106,029.72, Bal: $697.16,
Inv: 0.134068
Test Day 84 (2024-12-20): Sell 0.067034 units at $97,755.93, Bal: $7,250.11,
Inv: 0.067034
Test Day 87 (2024-12-23): Sell 0.033517 units at $94,686.24, Bal: $10,423.70,
Inv: 0.033517
Test Day 88 (2024-12-24): Buy 0.052818 units at $98,676.09, Bal: $5,211.85,
Inv: 0.086335
Test Day 89 (2024-12-25): Buy 0.026243 units at $99,299.20, Bal: $2,605.92,

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 105

Inv: 0.112578
Test Day 90 (2024-12-26): Sell 0.056289 units at $95,795.52, Bal: $7,998.15,
Inv: 0.056289
Test Day 91 (2024-12-27): Buy 0.042469 units at $94,164.86, Bal: $3,999.07,
Inv: 0.098758
Test Day 93 (2024-12-29): Sell 0.049379 units at $93,530.23, Bal: $8,617.49,
Inv: 0.049379
Test Day 94 (2024-12-30): Sell 0.024689 units at $92,643.21, Bal: $10,904.80,
Inv: 0.024689
Test Day 96 (2025-01-01): Buy 0.057746 units at $94,419.76, Bal: $5,452.40,
Inv: 0.082436
Test Day 97 (2025-01-02): Buy 0.028138 units at $96,886.88, Bal: $2,726.20,
Inv: 0.110574
Test Day 98 (2025-01-03): Buy 0.013894 units at $98,107.43, Bal: $1,363.10,
Inv: 0.124468
Test Day 99 (2025-01-04): Buy 0.006938 units at $98,236.23, Bal: $681.55,
Inv: 0.131406
Test Day 100 (2025-01-05): Buy 0.003466 units at $98,314.96, Bal: $340.78,
Inv: 0.134872
Test Day 103 (2025-01-08): Sell 0.067436 units at $95,043.52, Bal: $6,750.12,
Inv: 0.067436
Test Day 108 (2025-01-13): Buy 0.035709 units at $94,516.52, Bal: $3,375.06,
Inv: 0.103145
Test Day 109 (2025-01-14): Buy 0.017481 units at $96,534.05, Bal: $1,687.53,
Inv: 0.120626
Test Day 110 (2025-01-15): Sell 0.060313 units at $100,504.49, Bal:
$7,749.25, Inv: 0.060313
Test Day 111 (2025-01-16): Buy 0.038841 units at $99,756.91, Bal: $3,874.62,
Inv: 0.099154
Test Day 112 (2025-01-17): Buy 0.018546 units at $104,462.04, Bal: $1,937.31,
Inv: 0.117699
Test Day 114 (2025-01-19): Sell 0.058850 units at $101,089.61, Bal:
$7,886.39, Inv: 0.058850
Test Day 115 (2025-01-20): Sell 0.029425 units at $102,016.66, Bal:
$10,888.21, Inv: 0.029425
Test Day 117 (2025-01-22): Buy 0.052522 units at $103,653.07, Bal: $5,444.10,
Inv: 0.081947
Test Day 118 (2025-01-23): Buy 0.026184 units at $103,960.17, Bal: $2,722.05,
Inv: 0.108131
Test Day 119 (2025-01-24): Buy 0.012984 units at $104,819.48, Bal: $1,361.03,
Inv: 0.121115
Test Day 120 (2025-01-25): Buy 0.006499 units at $104,714.65, Bal: $680.51,
Inv: 0.127614
Test Day 121 (2025-01-26): Buy 0.003314 units at $102,682.50, Bal: $340.26,
Inv: 0.130928
Test Day 125 (2025-01-30): Sell 0.065464 units at $104,735.30, Bal:
$7,196.63, Inv: 0.065464
Test Day 127 (2025-02-01): Sell 0.032732 units at $100,655.91, Bal:
$10,491.29, Inv: 0.032732

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 106

Test Day 128 (2025-02-02): Buy 0.053697 units at $97,688.98, Bal: $5,245.64,
Inv: 0.086429
Test Day 129 (2025-02-03): Buy 0.025865 units at $101,405.42, Bal: $2,622.82,
Inv: 0.112294
Test Day 131 (2025-02-05): Sell 0.056147 units at $96,615.45, Bal: $8,047.49,
Inv: 0.056147
Test Day 132 (2025-02-06): Buy 0.041657 units at $96,593.30, Bal: $4,023.75,
Inv: 0.097804
Test Day 133 (2025-02-07): Buy 0.020842 units at $96,529.09, Bal: $2,011.87,
Inv: 0.118646
Test Day 134 (2025-02-08): Buy 0.010426 units at $96,482.45, Bal: $1,005.94,
Inv: 0.129072
Test Day 135 (2025-02-09): Buy 0.005212 units at $96,500.09, Bal: $502.97,
Inv: 0.134284
Test Day 136 (2025-02-10): Buy 0.002581 units at $97,437.55, Bal: $251.48,
Inv: 0.136865
Test Day 137 (2025-02-11): Buy 0.001313 units at $95,747.43, Bal: $125.74,
Inv: 0.138178
Test Day 138 (2025-02-12): Sell 0.069089 units at $97,885.86, Bal: $6,888.59,
Inv: 0.069089
Test Day 140 (2025-02-14): Buy 0.035323 units at $97,508.97, Bal: $3,444.29,
Inv: 0.104412
Test Day 142 (2025-02-16): Sell 0.052206 units at $96,175.03, Bal: $8,465.20,
Inv: 0.052206
Test Day 143 (2025-02-17): Buy 0.044194 units at $95,773.38, Bal: $4,232.60,
Inv: 0.096400
Test Day 146 (2025-02-20): Buy 0.021522 units at $98,333.94, Bal: $2,116.30,
Inv: 0.117921
Test Day 148 (2025-02-22): Buy 0.010956 units at $96,577.76, Bal: $1,058.15,
Inv: 0.128878
Test Day 151 (2025-02-25): Sell 0.064439 units at $88,736.17, Bal: $6,776.22,
Inv: 0.064439
Test Day 153 (2025-02-27): Sell 0.032219 units at $84,704.23, Bal: $9,505.34,
Inv: 0.032219
Test Day 155 (2025-03-01): Sell 0.016110 units at $86,031.91, Bal:
$10,891.30, Inv: 0.016110
Test Day 156 (2025-03-02): Buy 0.057780 units at $94,248.35, Bal: $5,445.65,
Inv: 0.073890
Test Day 157 (2025-03-03): Buy 0.031637 units at $86,065.67, Bal: $2,722.82,
Inv: 0.105526
Test Day 158 (2025-03-04): Sell 0.052763 units at $87,222.20, Bal: $7,324.93,
Inv: 0.052763
Test Day 159 (2025-03-05): Buy 0.040414 units at $90,623.56, Bal: $3,662.47,
Inv: 0.093177
Test Day 161 (2025-03-07): Sell 0.046589 units at $86,742.67, Bal: $7,703.68,
Inv: 0.046589
Test Day 163 (2025-03-09): Sell 0.023294 units at $80,601.04, Bal: $9,581.22,
Inv: 0.023294
Test Day 164 (2025-03-10): Buy 0.061002 units at $78,532.00, Bal: $4,790.61,

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 107

Inv: 0.084296
Test Day 165 (2025-03-11): Sell 0.042148 units at $82,862.21, Bal: $8,283.10,
Inv: 0.042148
Test Day 166 (2025-03-12): Buy 0.049468 units at $83,722.36, Bal: $4,141.55,
Inv: 0.091616
Test Day 167 (2025-03-13): Buy 0.025544 units at $81,066.70, Bal: $2,070.78,
Inv: 0.117160
Test Day 168 (2025-03-14): Buy 0.012331 units at $83,969.10, Bal: $1,035.39,
Inv: 0.129491
Test Day 169 (2025-03-15): Buy 0.006138 units at $84,343.11, Bal: $517.69,
Inv: 0.135628
Test Day 173 (2025-03-19): Sell 0.067814 units at $86,854.23, Bal: $6,407.65,
Inv: 0.067814
Test Day 174 (2025-03-20): Sell 0.033907 units at $84,167.20, Bal: $9,261.51,
Inv: 0.033907
Test Day 175 (2025-03-21): Sell 0.016954 units at $84,043.24, Bal:
$10,686.35, Inv: 0.016954
Test Day 176 (2025-03-22): Buy 0.063736 units at $83,832.48, Bal: $5,343.17,
Inv: 0.080690
Test Day 177 (2025-03-23): Buy 0.031045 units at $86,054.38, Bal: $2,671.59,
Inv: 0.111735
Test Day 178 (2025-03-24): Buy 0.015266 units at $87,498.91, Bal: $1,335.79,
Inv: 0.127002
Test Day 179 (2025-03-25): Buy 0.007636 units at $87,471.70, Bal: $667.90,
Inv: 0.134637
Test Day 183 (2025-03-29): Buy 0.004043 units at $82,597.59, Bal: $333.95,
Inv: 0.138680
Test Day 184 (2025-03-30): Sell 0.069340 units at $82,334.52, Bal: $6,043.03,
Inv: 0.069340
Test Day 186 (2025-04-01): Sell 0.034670 units at $85,169.17, Bal: $8,995.85,
Inv: 0.034670
Test Day 188 (2025-04-03): Buy 0.054125 units at $83,102.83, Bal: $4,497.93,
Inv: 0.088795
Test Day 189 (2025-04-04): Buy 0.026823 units at $83,843.80, Bal: $2,248.96,
Inv: 0.115618
Test Day 190 (2025-04-05): Buy 0.013466 units at $83,504.80, Bal: $1,124.48,
Inv: 0.129084
Test Day 191 (2025-04-06): Sell 0.064542 units at $78,214.48, Bal: $6,172.61,
Inv: 0.064542
Test Day 192 (2025-04-07): Sell 0.032271 units at $79,235.34, Bal: $8,729.62,
Inv: 0.032271
Test Day 194 (2025-04-09): Sell 0.016136 units at $82,573.95, Bal:
$10,061.99, Inv: 0.016136
Test Day 196 (2025-04-11): Buy 0.060320 units at $83,404.84, Bal: $5,031.00,
Inv: 0.076456
Test Day 197 (2025-04-12): Buy 0.029494 units at $85,287.11, Bal: $2,515.50,
Inv: 0.105950
Test Day 198 (2025-04-13): Buy 0.015030 units at $83,684.98, Bal: $1,257.75,
Inv: 0.120980

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 108

Test Day 199 (2025-04-14): Sell 0.060490 units at $84,542.39, Bal: $6,371.71,
Inv: 0.060490
Test Day 201 (2025-04-16): Sell 0.030245 units at $84,033.87, Bal: $8,913.31,
Inv: 0.030245
Test Day 203 (2025-04-18): Sell 0.015122 units at $84,450.80, Bal:
$10,190.41, Inv: 0.015122
Test Day 204 (2025-04-19): Buy 0.059899 units at $85,063.41, Bal: $5,095.21,
Inv: 0.075021
Test Day 205 (2025-04-20): Buy 0.029910 units at $85,174.30, Bal: $2,547.60,
Inv: 0.104932
Test Day 206 (2025-04-21): Sell 0.052466 units at $87,518.91, Bal: $7,139.36,
Inv: 0.052466
Test Day 207 (2025-04-22): Buy 0.038202 units at $93,441.89, Bal: $3,569.68,
Inv: 0.090668
Test Day 209 (2025-04-24): Buy 0.018999 units at $93,943.80, Bal: $1,784.84,
Inv: 0.109667
Test Day 212 (2025-04-27): Sell 0.054834 units at $93,754.84, Bal: $6,925.75,
Inv: 0.054834
Test Day 214 (2025-04-29): Sell 0.027417 units at $94,284.79, Bal: $9,510.74,
Inv: 0.027417
Test Day 216 (2025-05-01): Sell 0.013708 units at $96,492.34, Bal:
$10,833.49, Inv: 0.013708
Test Day 217 (2025-05-02): Buy 0.055895 units at $96,910.07, Bal: $5,416.75,
Inv: 0.069603
Test Day 218 (2025-05-03): Buy 0.028244 units at $95,891.80, Bal: $2,708.37,
Inv: 0.097847

Test Set Simulation Results:
Total Gains: $2,035.86
Total Investment Return: 20.36%
Ending Cash: $2,708.37
Ending Inventory: 0.097847 units (@ $95,327.29 = $9,327.49)
Final Portfolio Value: $12,035.86

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 109

Realistic Backtesting: The Importance of Train/Test Split

As highlighted previously, testing a trading strategy on the same data used to optimize it
leads to inflated and unrealistic performance metrics due to overfitting. The agent learns
the specific patterns of the training data, including its noise.

By splitting the data:

1. Training Set: Used exclusively by the Evolution Strategy
(_calculate_reward_on_train) to find the optimal neural network weights.

2. Test Set: A completely separate period used only once (run_test_simulation) to
evaluate how well the strategy, optimized on past data, performs on new, unseen
data.

This mimics real-world trading where strategies are developed on historical data and
deployed on future, unknown data. The performance on the test set gives a much more
reliable (though still not guaranteed) indication of potential real-world viability.

Further Considerations and Limitations

Even with a train/test split, this implementation is still simplified:

• Transaction Costs: Real trading involves commissions and potential slippage
(difference between expected and execution price), which are ignored here but
reduce profits.

• Market Regimes: The strategy’s performance might vary drastically depending on
whether the market is trending, ranging, or volatile. The train/test split helps, but
longer periods or walk-forward analysis might be needed for more robustness.

• Parameter Sensitivity: The performance heavily depends
on WINDOW_SIZE, LAYER_SIZE, ES hyperparameters
(POPULATION_SIZE, SIGMA, LEARNING_RATE), and the number of ITERATIONS. These

What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets 110

often require careful tuning (hyperparameter optimization), potentially using
a third dataset (validation set) separate from train and test.

• Trading Logic: The buy/sell logic (e.g., “invest 50% cash”) is arbitrary. More
sophisticated position sizing and risk management rules are essential in real
trading.

• Feature Engineering: Using only price changes is basic. Incorporating volume,
volatility measures, or other indicators could potentially improve performance.

Conclusion

This article demonstrated how Evolution Strategies can be combined with a simple neural
network to optimize a trading agent. We implemented this approach in Python,
emphasizing the crucial step of separating training and testing data for realistic
backtesting. While ES provides a powerful method for optimizing complex strategies where
gradients are unavailable, building a consistently profitable trading bot requires careful
consideration of data handling, model complexity, realistic simulation (including costs),
robust validation techniques, and rigorous risk management. This example serves as an
educational foundation for exploring these advanced concepts in algorithmic trading.

	Preface
	Algorithmic Bitcoin Trading Strategy using Machine Learning Classification
	1. Introduction: Classification for Trading Signals
	2. Problem Definition: Predicting Buy/Sell Signals
	3. Getting Started: Setting Up the Environment
	3.1. Python Packages
	3.2. Loading the Data

	4. Exploratory Data Analysis (EDA)
	5. Data Preparation
	5.1. Data Cleaning
	5.2. Preparing the Target Variable (signal)
	5.3. Feature Engineering: Technical Indicators
	5.4. Data Visualization (Post Feature Engineering)

	6. Evaluate Algorithms and Models
	6.1. Prepare Data for Modeling
	6.2. Train-Test Split
	6.3. Test Options and Evaluation Metric
	6.4. Compare Models and Algorithms

	7. Model Tuning and Grid Search (Random Forest)
	8. Finalize the Model and Evaluate
	8.1. Results on the Test Dataset

	9. Backtesting the Trading Strategy (Simplified)
	10. Conclusion and Next Steps

	Build Your Own AI Coding Assistant From Plan to Execution with Python and Ollama
	Can Kalman Filters Improve Your Trading Signals
	Decision Tree Learning
	Decision Trees and EMA Crossover 50% Average Annual Returns
	1. Theoretical Foundations
	1.1 Exponential Moving Average (EMA)
	1.2 Relative Strength Index (RSI)
	1.3 Moving Average Convergence Divergence (MACD)

	2. Decision Trees: Theory and Equations
	2.1 Introduction to Decision Trees
	2.2 Structure of a Decision Tree
	2.3 Splitting Criteria
	Entropy
	Information Gain
	Gini Index

	2.4 Decision Trees in the Trading Strategy

	3. Strategy Implementation
	3.1 Feature Engineering
	3.2 Training and Prediction Process
	3.3 Trade Execution Logic
	3.4 Code Walkthrough

	5. Backtests
	5. Conclusion

	Forecasting Bitcoin Autocorrelation with 74% Directional Accuracy using LSTMs
	Market Regime Detection using Hidden Markov Models
	Code Breakdown

	Neural Networks with Kalman Filter for Trading
	1. Theoretical Background
	1.1 Neural Networks
	Feed-Forward Neural Network Model

	1.2 Kalman Filter
	Kalman Filter Equations

	2. The Trading Strategy
	Trading Signal Generation
	Backtesting the Strategy

	3. Code Walkthrough
	3.1 Data Acquisition and Preprocessing
	3.2 Smoothing with the Kalman Filter
	3.3 Rolling Neural Network Training and Prediction
	Adjusting Predictions Based on Confidence

	3.4 Performance Evaluation and 7-Day Return Calculation
	3.5 Constructing and Plotting the Equity Curves
	NN Strategy Equity Curve
	Buy-and-Hold Equity Curve
	Plotting the Comparison

	4. Conclusion

	Predicting Bitcoin’s Weekly Moves with 68% Accuracy using Random Forests in Python
	Trading Using Neural Networks
	What if Darwin Traded Crypto An Experiment with Evolutionary AI & Neural Nets

